COI haplotype groups in Mesocriconema (Nematoda: Criconematidae) and their morphospecies associations

T.O. POWERS ${ }^{1,3}$, E.C. BERNARD 2, T. HARRIS ${ }^{1}$, R. HIGGINS ${ }^{1}$, M. OLSON ${ }^{1}$, M. LODEMA ${ }^{1}$, P. MULLIN ${ }^{1}$, L. SUTTON ${ }^{1}$ \& K.S. POWERS ${ }^{1}$
${ }^{\text {'D Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722, USA. E-mail: tpowers1@unl.edu }}$
${ }^{2}$ Entomology \& Plant Pathology, University of Tennessee, 2505 E.J. Chapman Drive, 370 Plant Biotechnology, Knoxville, TN, USA, 37996-4560. E-mail: ebernard@utk.edu ${ }^{3}$ Corresponding author

Table of contents

Abstract 101
Introduction 102
Material and methods 103
Results 114
Haplotype groups. 121
Groups 1, 15 and 16 M. ornatum morphotypes 121
Group 2: M. onoense (Luc, 1959) Loof \& De Grisse, 198 123
Group 3: Mesocriconema sp. 124
Groups 4, 18, 20-24: M. curvatum morphotypes 125
Group 5: M. rusticum (Micoletzky, 1915) Loof \& De Grisse, 1989 128
Group 6: Mesocriconema sp. 129
Group 7: M. discus (Thorne \& Malek, 1968) Loof \& De Grisse, 1989 129
Groups 8-14: M. xenoplax morphotypes 132
Group 17: Mesocriconema inaratum new combination 134
Group 19: M. kirjanovae (Andrássy, 1962) Loof \& De Grisse, 1989 135
Discussion 137
Acknowledgements 144
Literature cited 144

Abstract

Without applying an a priori bias for species boundaries, specimen identities in the plant-parasitic nematode genus Mesocriconema were evaluated by examining mitochondrial COI nucleotide sequences, morphology, and biogeography. A total of 242 specimens that morphologically conformed to the genus were individually photographed, measured, and amplified by a PCR primer set to preserve the linkage between specimen morphology and a specific DNA barcode sequence. Specimens were extracted from soil samples representing 45 locations across 23 ecoregions in North America. Dendrograms constructed by neighbor-joining, maximum likelihood, and Bayesian Inference using a 721-bp COI barcode were used to group COI haplotypes. Each tree-building approach resulted in 24 major haplotype groups within the dataset. The distinctiveness of these groups was evaluated by node support, genetic distance, absence of intermediates, and several measures of distinctiveness included in software used for the exploration of species boundaries. Five of the 24 COI haplotype groups corresponded to morphologically characterized, Linnaean species. Morphospecies conforming to M. discus, Discocriconemella inarata, M. rusticum, M. onoense, and M. kirjanovae were represented by groups composed of multiple closely related or identical COI haplotypes. In other cases, morphospecies names could be equally applied to multiple haplotype groups that were genetically distant from each other. Identification based on morphology alone resulted in M. curvatum and M. ornatum species designations applied to seven and three groups, respectively. Morphological characters typically used for species level identification were demonstrably variable within haplotype groups, suggesting caution in assigning species names based on published compendia that solely consider morphological characters. Morphospecies classified as M. xenoplax formed a monophyletic group composed of seven genetically distinct COI subgroups. The spe-

cies Discocriconemella inarata is transferred to Mesocriconema inaratum based on its phylogenetic position on the COI tree as well as previous phylogenetic analyses using 18 S, ITS1, and cytochrome b nucleotide sequences. This study indicates that some of the species considered cosmopolitan in their distribution are actually multispecies polyphyletic groupings and an accurate assessment of Mesocriconema species distributions will benefit from molecular determination of haplotype relationships. The groups revealed by COI analysis should provide a useful framework for the evaluation of additional Mesocriconema species and will improve the reliability of designating taxonomic units in studies of nematode biodiversity.

Key words: DNA barcode, identification, North America, plant-parasitic nematode, taxonomy

Introduction

Nematodes are frequently cited as a major source of undiscovered biodiversity on earth (Creer et al. 2010; Wilson 2007). The vivid imagery evoked by N.A. Cobb (1915) of a world covered by a film of nematodes has permeated popular science literature and reinforces the impression of remarkable nematode abundance and diversity (White 1998). Yet in spite of the popular perception, there are surprisingly few described species when compared to other groups of invertebrates (Bik et al. 2012). A recent accounting of described species in the phylum Nematoda at 24,783 is conservatively believed to represent $5-10 \%$ of extant species (Hodda 2011). One contributing factor to this relatively low number of described species may be the actual process of species delimitation typically used in the description of a new nematode species. A large percentage of nematode species have been characterized solely on the basis of a comparatively small set of morphological characters and measurements. Species delimited in this fashion have been called morphospecies. The delimitation process in nematology is seldom articulated, although it generally involves the search for discriminating morphological characters. Discriminating or diagnostic characters often are identified by the authors as those that exceed the known range of a morphometric variable, or combine measurements in a novel form to satisfy implicit criteria of diagnosability. If no morphologically diagnosable characters are identified, the species is assumed to be conspecific with an existing nominal species. Given the limited set of available morphological characters easily resolved by light microscopy, this approach has resulted in the recognition of a large number of cosmopolitan species (Artois et al. 2011).

The addition of DNA characters to the discovery process has revealed that many of these cosmopolitan species may actually consist of multiple genetically distinct subgroups (Kiontke et al. 2011; Nadler, S.A. \& Pérez-Ponce De León, G. 2012). In this study we examined North American species in the plant-parasitic nematode genus Mesocriconema Andrássy, 1965. Worldwide this genus has 90 valid species (Geraert 2010). Approximately 24 species are reported from North America. Among the North American species are five morphospecies that could be considered worldwide in distribution. These species, M. curvatum (Raski, 1952) Loof \& DeGrisse, 1989, M. ornatum (Raski, 1958) Loof \& DeGrisse, 1989, M. rusticum (Micoletzky, 1915) Loof \& DeGrisse, 1989, M. sphaerocephalum (Taylor, 1936) Loof \& DeGrisse, 1989, and M. xenoplax (Raski, 1952) Loof \& DeGrisse, 1989 are predominantly associated with agricultural plant hosts, and it is this association that is assumed responsible for their present-day cosmopolitan distribution (Wouts 2006). These species, however, are not confined to agricultural hosts, and surveys of native plant communities also record their presence. Another potential factor contributing to their perceived cosmopolitan distribution is the relatively early dates of their descriptions. All five species were described prior to 1952, a time when only 21 species were listed as belonging to the genus Criconemoides Taylor, 1936. Early records of occurrence leading to present-day perception of global distributions may actually reflect the limited options available in early keys, "fuzzy" species boundaries, or assumptions of identity biased by plant host association. For example, a criconematid species associated with peach in the southeastern U.S. might automatically be assumed to be M. xenoplax, based on that species' role in the disease complex called peach tree short-life (Nyczepir et al. 1985).

Our study encompasses collections from within 23 of the 118 North American World Wildlife Federation (WWF) ecoregions (Olson et al. 2004) including both native plant communities and cultivated soils (Table 1). From these soils we have extracted and analyzed specimens morphologically conforming to the genus Mesocriconema. Each specimen is measured, photographed, and then processed for PCR by primers that permit nucleotide sequencing of a 721-bp portion of the mitochondrial COI gene. This approach preserves the link between specimen morphology and COI haplotype, and allows us to link morphologically distinct juvenile and
adult stages. Males are rare in Mesocriconema and have not been included in the analysis. Of the 89 Mesocriconema species descriptions in Geraert (2010), males are unknown for 72. Criconematid males have a degenerate morphology and differ little among the various genera in this family. It is likely that Mesocriconema males play little or no role in reproduction and that mitochondrial and nuclear genomes are inherited clonally; parthenogenesis is assumed to be the primary form of reproduction in Mesocriconema. No Mesocriconema males were encountered in the collections examined in this study.

The goals of this study were to construct a gene tree from the 721-bp portion of COI, use it as a framework to evaluate nematode morphology, and assess congruence of morphospecies designations with COI-derived groups. This study is not a revision of Mesocriconema and is not intended to address issues of higher classification. Included among the morphospecies in the dataset are four of the five cosmopolitan species commonly observed in North America. Two species were sampled at their type localities (Discocriconemella inarata Hoffman, 1974 and Mesocriconema discus (Thorne \& Malek, 1968) Loof \& DeGrisse, 1989) and two other species were sampled from type hosts within the vicinity of a type locality (M. ornatum and M. xenoplax). Defining characteristics of the genus Mesocriconema are the presence of four submedian lobes surrounding the oral disc on the cephalic region and an open vulva, often preceded by cuticular modifications or projections of the annule anterior to the vulva. This modification is sometimes termed the anterior vulval lip or vulval flap. In general, Mesocriconema species, like all Criconematidae, are recognized by the distinct transverse annulations that give the nematode a segmented appearance and hence their common name of ring nematodes. Nomenclature of the genus has been considered unstable (Hunt 2008). Some nematode taxonomists use Macroposthonia de Man, 1880, in the place of Mesocriconema (Siddiqi 2000; Wouts 2006) and others recognize neither genus name, preferring to assign species to the genus Criconemoides Taylor, 1936 (Decraemer \& Hunt 2006). In using Mesocriconema, we are following two recent comprehensive taxonomic treatments of terrestrial nematodes (Andrássy 2007; Geraert 2010).

Species descriptions of criconematid nematodes have historically used an implicit morphological species concept, although it has been noted that during the last 25 years of taxonomic research in nematology "nematode descriptions are typically devoid of reference to explicit species concepts or details and procedures of delimitation" (Nadler 2002). In this report we apply a lineage species concept as articulated by De Queiroz (2007) using an integrated taxonomic approach for species delimitation (De Salle et al. 2005; Gibbs 2009; Padial et al. 2010). Molecular criteria used to evaluate the distinctiveness of haplotype groups in this study included Rosenberg's measure of reciprocal monophyly (Rosenberg et al. 2007), absence of genetic intermediates, genetic distance, and the Rodrigo et al. (2008) measure of taxon distinctiveness. Most sampling localities were georeferenced and locality information appended to GenBank accession numbers. The morphology of individual specimens was reassessed and discussed in light of molecular-based haplotype groupings.

Material and methods

Collection information about each of the specimens examined in this study is given in Table 1. Each specimen is represented by a unique Nematode Identification Number (NID) and that number is affixed to the terminal tips on the phylogenetic trees and to the figures depicting nematode morphology. The figures and text in the results section were organized according to the haplotype groups generated by neighbor-joining analysis of the entire 247specimen dataset using the COI gene region. Haplotype groups were sequentially numbered starting with the group arranged closest to the outgroup taxa on the radial version of the neighbor-joining tree (Fig. 1).

Nematode specimens were extracted from soil samples by a modified flotation-sieving and centrifugation method (Jenkins 1964). Morphological analysis was generally conducted on living specimens, or specimens heatrelaxed on glass microscope slides. Living specimens were more likely to provide views of ventral body parts and occasionally en face views useful for evaluating submedian lobes and labial plates. Each nematode was photographed with a Leica DC300 video camera and measured on a Leica DMLB light microscope with Differential Interference Contrast. A set of standard measurements were obtained from each nematode. Measurements for adults are illustrated on Figure 3 and include the following: $L=$ body length, eso $=$ length of esophagus (pharynx) from anterior end to junction with intestine, $\mathrm{R}=$ number of annules, $\mathrm{Rex}=$ number of annules from anterior end of body to excretory pore, $\mathrm{Rv}=$ number of annules from tail terminus to vulva, $\mathrm{V}=$ position of the vulva expressed as a percentage of total body length, number of anastomoses on the body cuticle, length of
stylet, width of stylet knobs, width of annules at midbody, midbody width, vulval body width and width of first labial annule.

Following photo-documentation the nematode specimen was removed from the glass slide, placed on a coverslip in an $18 \mu \mathrm{l}$ drop of sterile water, and ruptured with a transparent micropipette tip. The macerated nematode in water was transferred to a $0.25-\mathrm{ml}$ PCR reaction tube and stored at $-20^{\circ} \mathrm{C}$.

The COI primer sequences were COI-F5-5'-AATWTWGGTGTTGGAACTTCTTGAAC-3' and COI-R9-5'-CTTAAAACATAATGRAAATGWGCWACWACATAATAAGTATC-3' which in PCR reactions produced an approximately 790-bp amplification product, providing 721 bp of sequence for genetic analysis. The primers are located on the mitochondrial COI gene at positions 1822-2612 on the Drosophila yakuba reference sequence (GenBank Accession \# X03240) (Clary \& Wolstenholme 1985). PCR amplification reactions, conducted in a 30.0$\mu \mathrm{l}$ total volume within $0.6-\mathrm{ml}$ reaction tubes, consisted of $9.0 \mu \mathrm{l}$ of template from the ruptured nematode specimen, $2.4 \mu \mathrm{l}$ of each $20 \mu \mathrm{M}$ primer solution for a $1.6 \mu \mathrm{M}$ final primer concentration, $1.2 \mu \mathrm{ldHH} 20$, and $15 \mu \mathrm{l}$ of 2 x JumpStart REDTaq ReadyMix (Sigma-Aldrich) for a $0.03 \mathrm{U} / \mu \mathrm{l}$ final enzyme concentration. PCR conditions included a hotstart and 5 -minute treatment at $94^{\circ} \mathrm{C}$ followed by 50 cycles of 30 seconds at $94^{\circ} \mathrm{C}$ denaturation, 30 seconds at $48^{\circ} \mathrm{C}$ annealing, and 1.5 minutes at $72^{\circ} \mathrm{C}$ with a ramping rate of $0.5^{\circ} \mathrm{C} /$ second for the elongation step. A final 5 -minute extension at $72^{\circ} \mathrm{C}$ completed the process. Following amplification, an initial check gel was run followed by cleaning of the PCR product by gel fragment extraction from a 0.7% agarose gel, using Gel/PCR DNA Fragment Extraction Kit (IBI Scientific). DNA templates were sequenced by either the sequencing center at the University of Arkansas for Medical Services or by Davis Sequencing Services. Nearly all amplification products were sequenced in both directions (three were sequenced in one direction only). CodonCode Aligner Version 4.2 (http://www.codoncode.com/) was used for sequence editing prior to alignment using Clustal W in MEGA version 5 (Tamura et al. 2011).

Neighbor-joining analysis was conducted in MEGA5 using p-distance values and 2,000 bootstrap replications. Maximum-likelihood analyses conducted in MEGA5 with selection of best substitutions model by the Akaike Information Criterion (Akaike 1974) resulted in the selection of the General Time Reversible Model with Gammadistributed rates plus invariant sites (GTR $+\mathrm{G}+\mathrm{I}$). Bayesian analyses were conducted using the Mr. Bayes 3.2.1 Plugin through Geneious R7. The selected substitution model was GTR and posterior probability was used in assessment of clade credibility (Bayesian trees not presented).

Nucleotide and haplotype diversity, and other features of the haplotype groups were evaluated using DnaSP Version 5 (Librado \& Rozas 2009). Mean pairwise intergroup p-distances were calculated using MEGA5. Measures of haplotype group distinctiveness were evaluated with the Species Delimitation plug-in to the Geneious software package (Masters et al. 2011). The plug-in options include assessments of reciprocal monophyly and Intra/Inter, the ratio of within-group genetic differentiation to the distance to the nearest neighbor. This ratio, together with the known number of taxa in the reference group, was used in determining the probability of correct identification under strict or relaxed cladistic criteria (P ID (Strict) or P ID (liberal)) (Ross et al. 2008). Under the liberal criteria, the unknown member of the group must fall within or be a sister to the group, and under the strict criteria the unknown member must fall within the group and not in the sister group. These probabilities are reported with 95% confidence intervals. Rosenberg's test (Rosenberg 2007) for reciprocal monophyly (P(AB)) and the statistic for calculating clade distinctiveness by Rodrigo et al. (2008) were also applied to the haplotype groups. The latter two measures assess the probability that the observed patterns were due to random coalescent processes.

DNA sequences were submitted to GenBank (GB Acc \#s KJ787823-KJ788069) with associated GPS coordinates when available. Both females and juveniles were used in molecular analyses. Only adult females were used in the morphological analyses presented in Table 5.

Nematodes were prepared for scanning electron microscopy (SEM) by fixation in 4% formalin followed by dehydration in a graded series of alcohol to 100% ETOH, critical point drying, mounting on SEM specimen stubs, and coating with gold. Images were obtained on a Hitachi S-3000N scanning electron microscope. Nematodes prepared for SEM were selected from conspecific specimens from the same soil sample, which were measured and analyzed molecularly. Although care was taken in the microscopic selection of specimens for SEM analysis, the possibility exists that non-target specimens were unintentionally selected.
TABLE 1. Specimen origin, COI haplotype group, morphospecies designation and Nematode Identification Number (NID)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
1	500	Mesocriconema	ornatum	F	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787823
1	502	Mesocriconema	ornatum	F	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787824
1	505	Mesocriconema	ornatum	J	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787825
1	1275	Mesocriconema	ornatum	F	Chilton County, AL	Southeastern Mixed Forests	NA0413	Y	KJ787826
1	1281	Mesocriconema	ornatum	F	Chilton County, AL	Southeastern Mixed Forests	NA0413	Y	KJ787827
1	1283	Mesocriconema	ornatum	F	Chilton County, AL	Southeastern Mixed Forests	NA0413	Y	KJ787828
1	1284	Mesocriconema	ornatum	F	Chilton County, AL	Southeastern Mixed Forests	NA0413	Y	KJ787829
1	1285	Mesocriconema	ornatum	J	Chilton County, AL	Southeastern Mixed Forests	NA0413	Y	KJ787830
1	P183088	Mesocriconema	ornatum	J	Heredia Province, Costa Rica	Isthmian-Atlantic Moist Forests	NT0129	Y	KJ787831
1	P183090	Mesocriconema	ornatum	J	Heredia Province, Costa Rica	Isthmian-Atlantic Moist Forests	NT0129	Y	KJ787832
1	P190087	Mesocriconema	ornatum	J	Frio County, TX	Tamaulipan Mezquital	NA1312	Y	KJ787833
2	1242	Mesocriconema	onoense	F	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787834
2	1249	Mesocriconema	onoense	F	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787835
2	1250	Mesocriconema	onoense	F	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787836
2	1253	Mesocriconema	onoense	F	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787837
2	1254	Mesocriconema	onoense	J	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787838
3	1059	Mesocriconema	sp.	F	Gallatin National Forest, MT	South Central Rockies Forests	NA0528	N	KJ787839
3	1096	Mesocriconema	sp.	F	Gallatin National Forest, MT	South Central Rockies Forests	NA0528	N	KJ787840
3	1100	Mesocriconema	sp.	J	Gallatin National Forest, MT	South Central Rockies Forests	NA0528	N	KJ787841
3	1101	Mesocriconema	sp.	F	Gallatin National Forest, MT	South Central Rockies Forests	NA0528	N	KJ787842
4	122	Mesocriconema	curvatum	F	MT	Northern Tall Grasslands	NA0812	Y	KJ787843
4	123	Mesocriconema	curvatum	F	MT	Northern Tall Grasslands	NA0812	Y	KJ787844
4	124	Mesocriconema	curvatum	J	Boone County, MO	Central US Hardwood Forests	NA0404	Y	KJ787845
4	149	Mesocriconema	curvatum	F	Big Horn County, WY	Wyoming Basin Shrub Steppe	NA1313	Y	KJ787846
4	362	Mesocriconema	curvatum	F	Treasure County, MT	Northwestern Mixed Grasslands	NA0810	Y	KJ787847
4	1087	Mesocriconema	curvatum	F	Saunders County, NE	Central Tall Grasslands	NA0805	Y	KJ787848
4	1088	Mesocriconema	curvatum	F	Saunders County, NE	Central Tall Grasslands	NA0805	Y	KJ787849
4	1090	Mesocriconema	curvatum	J	Saunders County, NE	Central Tall Grasslands	NA0805	Y	KJ787850

TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
4	1116	Mesocriconema	curvatum	J	Arena Pines and Sand Barrens State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ787851
5	99	Mesocriconema	rusticum	F	Summit County, UT	Wasatch and Uinta Montane Forests	NA0530	Y	KJ787852
5	447	Mesocriconema	rusticum	F	Douglas County, NE	Central Tall Grasslands	NA0805	Y	KJ787853
5	691	Mesocriconema	rusticum	F	UNL East Campus, NE	Central Tall Grasslands	NA0805	Y	KJ787854
5	742	Mesocriconema	rusticum	J	Shimek State Forest, IA	Central Tall Grasslands	NA0805	N	KJ787855
5	1140	Mesocriconema	rusticum	F	Avoca Prairie and Savanna State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ787856
5	1141	Mesocriconema	rusticum	J	Avoca Prairie and Savanna State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ787857
5	P155078	Mesocriconema	rusticum	F	Konza Prairie Biological Station, KS	Flint Hills Tall Grasslands	NA0807	N	KJ787858
5	P228021	Mesocriconema	rusticum	U	UNL East Campus, NE	Central Tall Grasslands	NA0805	Y	KJ787859
6	432	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787860
6	753	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787861
6	1257	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787862
6	1258	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787863
6	1259	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787864
6	1260	Mesocriconema	sp.	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787865
7	431	Mesocriconema	discus	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787866
7	433	Mesocriconema	discus	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787867
7	443	Mesocriconema	discus	J	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787868
7	444	Mesocriconema	discus	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787869
7	756	Mesocriconema	discus	F	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787870
7	757	Mesocriconema	discus	J	Brookings County, SD	Central Tall Grasslands	NA0805	N	KJ787871
7	844	Mesocriconema	discus	J	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787872
8	728	Mesocriconema	xenoplax	F	Pickens County, SC	Southeastern Mixed Forests	NA0413	Y	KJ787873
8	729	Mesocriconema	xenoplax	J	Pickens County, SC	Southeastern Mixed Forests	NA0413	Y	KJ787874
8	730	Mesocriconema	xenoplax	J	Pickens County, SC	Southeastern Mixed Forests	NA0413	Y	KJ787875
8	1294	Mesocriconema	xenoplax	F	Clemson University, Musser Fruit Research Farm, SC	Southeastern Mixed Forests	NA0413	Y	KJ787876
8	1297	Mesocriconema	xenoplax	J	Clemson University, Musser Fruit Research Form or	Southeastern Mixed Forests	NA0413	Y	KJ787877

TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
8	1298	Mesocriconema	xenoplax	F	Clemson University, Musser Fruit Research Farm, SC	Southeastern Mixed Forests	NA0413	Y	KJ787878
8	P231030	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787879
9	583	Mesocriconema	xenoplax	F	Wakulla County, FL	Southeastern Conifer Forests	NA0529	N	KJ787880
9	607	Mesocriconema	xenoplax	F	Schluckebier Prairie State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ787881
9	733	Mesocriconema	xenoplax	J	Washington County, AR	Ozark Mountain Forests	NA0412	N	KJ787882
9	735	Mesocriconema	xenoplax	J	Washington County, AR	Ozark Mountain Forests	NA0412	N	KJ787883
9	1217	Mesocriconema	xenoplax	F	Sauk County, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ787884
10	584	Mesocriconema	xenoplax	F	Columbia County, FL	Southeastern Conifer Forests	NA0529	N	KJ787885
10	588	Mesocriconema	xenoplax	F	Columbia County, FL	Southeastern Conifer Forests	NA0529	N	KJ787886
10	736	Mesocriconema	xenoplax	F	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787887
10	P231026	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787888
10	P231028	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787889
10	P231031	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787890
10	P231032	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787891
10	P231034	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787892
10	P231035	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787893
10	P231036	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787894
10	P231037	Mesocriconema	xenoplax	U	USDA Southeastern Fruit and Nut Research Laboratory, GA	Southeastern Mixed Forests	NA0413	Y	KJ787895
11	999	Mesocriconema	xenoplax	F	GRSM, TN	Appalachian Blue Ridge Forests	NA0403	N	KJ787896
11	1024	Mesocriconema	xenoplax	F	GRSM, TN	Appalachian Blue Ridge Forests	NA0403	N	KJ787897
11	1025	Mesocriconema	xenoplax	F	GRSM, TN	Appalachian Blue Ridge Forests	NA0403	N	KJ787898
11	1028	Mesocriconema	xenoplax	J	GRSM, TN	Appalachian Blue Ridge Forests	NA0403	N	KJ787899
11	1215	Mesocriconema	xenoplax	F	Accotink Creek Watershed, Fairfax County, VA	Southeastern Mixed Forests	NA0413	N	KJ787900

TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
12	3	Mesocriconema	xenoplax	F	Cass County, NE	Central Tall Grasslands	NA0805	N	KJ787901
12	173	Mesocriconema	xenoplax	F	Hooker County, NE	Nebraska Sand Hills Mixed Grasslands	NA0809	N	KJ787902
12	944	Mesocriconema	xenoplax	J	Cass County, NE	Central Tall Grasslands	NA0805	N	KJ787903
12	945	Mesocriconema	xenoplax	J	Cass County, NE	Central Tall Grasslands	NA0805	N	KJ787904
12	947	Mesocriconema	xenoplax	J	Cass County, NE	Central Tall Grasslands	NA0805	N	KJ787905
13	724	Mesocriconema	xenoplax	F	GRSM, TN	Appalachian Blue Ridge Forests	NA0403	N	KJ787906
13	746	Mesocriconema	xenoplax	J	British Columbia, CAN	Cascade Mountains Leeward Forests	NA0507	N	KJ787907
13	747	Mesocriconema	xenoplax	F	British Columbia, CAN	Cascade Mountains Leeward Forests	NA0507	N	KJ787908
13	1267	Mesocriconema	xenoplax	J	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ787909
13	1276	Mesocriconema	xenoplax	F	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ787910
13	P74053	Mesocriconema	xenoplax	J	Fresno County, CA	California Central Valley Grasslands	NA0801	Y	KJ787911
13	P194033	Mesocriconema	xenoplax	F	Konza Prairie Biological Station, KS	Flint Hills Tall Grasslands	NA0807	N	KJ787912
14	1072	Mesocriconema	xenoplax	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787913
14	1073	Mesocriconema	xenoplax	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787914
14	1368	Mesocriconema	xenoplax	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787915
14	1375	Mesocriconema	xenoplax	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787916
15	1067	Mesocriconema	ornatum	F	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ787917
15	1104	Mesocriconema	ornatum	F	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ787918
15	1105	Mesocriconema	ornatum	J	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ787919
15	1106	Mesocriconema	ornatum	F	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ787920
15	1107	Mesocriconema	ornatum	F	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ787921
15	1248	Mesocriconema	ornatum	F	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787922
15	1251	Mesocriconema	ornatum	J	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787923
15	1252	Mesocriconema	ornatum	J	Auburn University Turf Unit, AL	Southeastern Mixed Forests	NA0413	Y	KJ787924
15	1299	Mesocriconema	ornatum	F	Lowndes County, MS	Southeastern Mixed Forests	NA0413	Y	KJ787925
15	1300	Mesocriconema	ornatum	F	Lowndes County, MS	Southeastern Mixed Forests	NA0413	Y	KJ787926
15	1301	Mesocriconema	ornatum	J	Lowndes County, MS	Southeastern Mixed Forests	NA0413	Y	KJ787927
16	244	Mesocriconema	sp.	J	NMSU, Leyendecker Plant Science Research Center, NM	Chihuahuan Desert	NA1302	Y	KJ787928
16	245	Mesocriconema	sp.	F	NMSU, Leyendecker Plant Science Research Center, NM	Chihuahuan Desert	NA1302	Y	KJ787929

TABLE 1. (Continued)

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
17	9	Mesocriconema	inaratum	F	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787930
17	12	Mesocriconema	inaratum	F	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787931
17	759	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787932
17	760	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787933
17	1134	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787934
17	1135	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787935
17	1138	Mesocriconema	inaratum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787936
17	1153	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787937
17	1154	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787938
17	1172	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787939
17	1244	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787940
17	1266	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787941
17	1312	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787942
17	1319	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787943
17	1320	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787944
17	1321	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787945
17	1322	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787946
17	1323	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787947
17	1363	Mesocriconema	inaratum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787948
17	1364	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787949
17	1366	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787950
17	1367	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787951
17	1369	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787952
17	1373	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787953
17	1402	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787954
17	1403	Mesocriconema	inaratum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787955
17	1410	Mesocriconema	inaratum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787956
17	1422	Mesocriconema	inaratum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787957
17	1424	Mesocriconema	inaratum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787958

TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
18	600	Mesocriconema	curvatum	F	Aurora Prairie, SD	Central Tall Grasslands	NA0805	N	KJ787959
18	825	Mesocriconema	curvatum	F	Sheeder Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787960
18	827	Mesocriconema	curvatum	J	Sheeder Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787961
18	828	Mesocriconema	curvatum	F	Sheeder Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787962
18	829	Mesocriconema	curvatum	F	Sheeder Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787963
18	832	Mesocriconema	curvatum	F	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787964
18	833	Mesocriconema	curvatum	F	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787965
18	835	Mesocriconema	curvatum	J	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787966
18	836	Mesocriconema	curvatum	F	Kalsow Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787967
18	842	Mesocriconema	curvatum	F	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787968
18	843	Mesocriconema	curvatum	J	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787969
18	845	Mesocriconema	curvatum	F	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787970
18	884	Mesocriconema	curvatum	F	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ787971
18	888	Mesocriconema	curvatum	F	Reichelt Unit, Rock Creek State Park, IA	Central Tall Grasslands	NA0805	N	KJ787972
18	1050	Mesocriconema	curvatum	J	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ787973
18	1074	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787974
18	1091	Mesocriconema	curvatum	J	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ787975
18	1092	Mesocriconema	curvatum	F	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ787976
18	1093	Mesocriconema	curvatum	J	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ787977
18	1094	Mesocriconema	curvatum	F	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ787978
18	1112	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787979
18	1246	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787980
18	1265	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787981
18	1313	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787982
18	1315	Mesocriconema	curvatum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787983
18	1318	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787984
18	1343	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787985
18	1352	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787986
18	1374	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787987

......continued on the next page
TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
18	1378	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787988
18	1379	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787989
18	1380	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787990
18	1386	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787991
18	1413	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787992
18	1415	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787993
18	1429	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787994
18	1430	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787995
18	1433	Mesocriconema	curvatum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787996
18	1434	Mesocriconema	curvatum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ787997
18	P77025	Mesocriconema	curvatum	F	Konza Prairie Biological Station, KS	Flint Hills Tall Grasslands	NA0807	N	KJ787998
19	919	Mesocriconema	kirjanovae	J	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ787999
19	920	Mesocriconema	kirjanovae	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788000
19	943	Mesocriconema	kirjanovae	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788001
19	1168	Mesocriconema	kirjanovae	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788002
19	1169	Mesocriconema	kirjanovae	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788003
19	1170	Mesocriconema	kirjanovae	J	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788004
20	1270	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788005
20	1278	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788006
20	1303	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788007
20	1351	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788008
21	918	Mesocriconema	curvatum	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788009
21	942	Mesocriconema	curvatum	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788010
22	321	Mesocriconema	curvatum	F	Baltimore County, MD	Southeastern Mixed Forests	NA0413	N	KJ788011
22	363	Mesocriconema	curvatum	F	Baltimore County, MD	Southeastern Mixed Forests	NA0413	N	KJ788012
22	1167	Mesocriconema	curvatum	J	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788013
23	609	Mesocriconema	curvatum	F	Avoca Prairie and Savanna State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ788014
23	956	Mesocriconema	curvatum	F	Schluckebier Prairie State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ788015
24	608	Mesocriconema	curvatum	F	Walworth County, SD	Northern Short Grasslands	NA0811	Y	KJ788016

continued on the next page Wallon
TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
24	741	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788017
24	855	Mesocriconema	curvatum	J	Doolittle Prairie State Preserve, IA	Central Tall Grasslands	NA0805	N	KJ788018
24	1051	Mesocriconema	curvatum	F	Stafford County, KS	Central and Southern Mixed Grasslands	NA0803	N	KJ788019
24	1053	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788020
24	1054	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788021
24	1055	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788022
24	1056	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788023
24	1057	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788024
24	1058	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788025
24	1064	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788026
24	1066	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788027
24	1075	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788028
24	1109	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788029
24	1127	Mesocriconema	curvatum	F	Avoca Prairie and Savanna State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ788030
24	1129	Mesocriconema	curvatum	F	Avoca Prairie and Savanna State Natural Area, Iowa County, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ788031
24	1142	Mesocriconema	curvatum	F	Avoca Prairie and Savanna State Natural Area, WI	Upper Midwest Forest-Savanna Transition Zone	NA0415	N	KJ788032
24	1166	Mesocriconema	curvatum	F	Roth Prairie Natural Area, AR	Mississippi Lowland Forests	NA0409	N	KJ788033
24	1238	Mesocriconema	curvatum	F	Hitchcock County, NE	Central and Southern Mixed Grasslands	NA0803	N	KJ788034
24	1239	Mesocriconema	curvatum	F	Hitchcock County, NE	Central and Southern Mixed Grasslands	NA0803	N	KJ788035
24	1240	Mesocriconema	curvatum	J	Hitchcock County, NE	Central and Southern Mixed Grasslands	NA0803	N	KJ788036
24	1245	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788037
24	1264	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788038
24	1271	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788039
24	1277	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788040
24	1286	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788041
24	1287	Mesocriconema	curvatum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788042
24	1289	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788043
24	1314	Mesocriconema	curvatum	J	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788044

.......continued on the next page
TABLE 1. (Continued)

	NID	Genus	Species		Locality Name	Ecoregion Name (WWF)	Eco Code		Accession Number
24	1317	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788045
24	1342	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788046
24	1359	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788047
24	1360	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788048
24	1370	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788049
24	1371	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788050
24	1383	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788051
24	1384	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788052
24	1388	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788053
24	1389	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788054
24	1390	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788055
24	1391	Mesocriconema	curvatum	J	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788056
24	1393	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788057
24	1394	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788058
24	1427	Mesocriconema	curvatum	F	Spring Creek Prairie, NE	Central Tall Grasslands	NA0805	N	K.J788059
24	1428	Mesocriconema	curvatum	F	Nine-Mile Prairie, NE	Central Tall Grasslands	NA0805	N	KJ788060
O	570	Mesocriconema	$s p$.	J	Jonathan Dickinson State Park, FL	Florida Sand Pine Scrub	NA0513	N	KJ788061
O	1068	Mesocriconema	ornatum	J	Beaufort County, SC	Middle Atlantic Coastal Forests	NA0517	Y	KJ788062
-	1451	Mesocriconema	xenoplax	F	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ788063
O	P151049	Nothocriconemoides	sp.	F	La Selva Biological Station, Costa Rica	Isthmian-Atlantic Moist Forests	NT0129	N	KJ788064
OG	449	Hemicycliophora	typica	F	Greece	Aegean and Western Turkey Sclerophyllous and Mixed Forests	PA1201	Y	KJ788065
OG	1261	Hemicycliophora	macristhmus	F	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ788066
OG	1292	Hemicycliophora	thornei	F	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ788067
OG	1305	Hemicycliophora	sp.	F	GWMP, VA	Southeastern Mixed Forests	NA0413	N	KJ788068
OG	P184030	Discocriconemella	limitanea	F	Las Cruces Biological Station, Costa Rica	Isthmian-Pacific Moist Forests	NT0130	N	KJ788069

[^0]
Results

COI haplotype groups in Mesocriconema dataset. A neighbor-joining analysis of all 242 Mesocriconema specimens in the dataset and 5 outgroup specimens was prepared as a radial tree (Fig. 1). The bars outside the terminal tips in Figure 1 identify 24 well-supported groups based on calculated genetic distance (mean intergroup p-distance 12.4%). A matrix of pairwise genetic p-distance values with the closest values for each pairing highlighted is presented in Table 3. Pairwise p-distance values of the haplotype groups range from a low of 0.027 (2.7% for groups 12×13) to 0.227 (22.7% for groups 17 x 1). Haplotype diversity and nucleotide diversity for the 24 groups are presented in Table 2. Four singletons present in the dataset (N1068, P151049, N570, N1451) were not readily accommodated by any group and were excluded from these analyses.

A maximum-likelihood tree from the Mesocriconema dataset was generated after redundant sequences were removed (Fig. 2). Eight of the groups in Figure 1 were collapsed to a single sequence due to the lack of haplotype diversity within those groups, reducing the dataset to 82 sequences, excluding outgroup taxa. These eight haplotypes were still considered as haplotype "groups" for morphological analyses due to the existence of multiple specimens included within the groups and the large genetic distance between groups. In the case of Group 1, a single COI haplotype was collected from five locations ranging geographically from Georgia, Alabama, and Texas in the United States, to Costa Rica in Central America. Six of the other haplotype groups lacking diversity were collected from single locations indicating the need for additional sampling.

TABLE 2. COI haplotype, nucleotide diversity, and mean intragroup distance.

Haplotype Group	n	Number of Mutations	Number of Haplotypes	Haplotype Diversity	Nucleotide Diversity	P-Distance	

FIGURE 1. Neighbor-joining tree of COI nucleotide sequence from 242 Mesocriconema specimens. Each terminal node includes a Nematode Identification Number (NID), taxon name, and location information. Haplotype groups have been bracketed and given a group number. Groups shaded by color indicate haplotype groups and their potential morphospecies identification (blue $=$ M. curvatum, pink $=$ M. ornatum, yellow $=$ M. xenoplax). Bootstrap support values are provided for each haplotype group.

FIGURE 2. Maximum-likelihood tree of dataset reduced to 81 unique Mesocriconema haplotypes and including 1 outgroup sequence. Haplotype groups are indicated by the boxed numbers by the terminal branch tips. Eight haplotype groups without haplotype diversity are indicated by bolded branches. Four singleton specimens of uncertain taxonomic status are indicated by tan branches and boxed NID numbers. Bootstrap support values represent 100 replications. The tree was rooted with Discocriconemella limitanea.
TABLE 3. Interspecific mean pairwise distance (P-distance). Lowest distance-values bolded.

$\begin{gathered} \text { Group } \\ \# \\ \hline \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1		0.138	0.174	0.165	0.167	0.179	0.196	0.204	0.219	0.213	0.196	0.201	0.199	0.226	0.216	0.204	0.227	0.198	0.189	0.207	0.225	0.199	0.203	0.21
2			0.136	0.143	0.144	0.15	0.163	0.193	0.202	0.188	0.195	0.191	0.192	0.207	0.219	0.19	0.204	0.174	0.173	0.179	0.19	0.173	0.184	0.175
3				0.139	0.125	0.143	0.142	0.164	0.179	0.172	0.18	0.179	0.172	0.185	0.213	0.193	0.189	0.16	0.174	0.159	0.181	0.153	0.169	0.144
4					0.114	0.121	0.147	0.173	0.182	0.187	0.182	0.169	0.174	0.18	0.195	0.174	0.179	0.158	0.17	0.166	0.179	0.163	0.17	0.148
5						0.078	0.11	0.143	0.163	0.154	0.153	0.143	0.137	0.153	0.18	0.171	0.169	0.131	0.149	0.144	0.154	0.117	0.126	0.109
6							0.128	0.165	0.173	0.161	0.152	0.156	0.153	0.157	0.194	0.179	0.178	0.152	0.163	0.169	0.171	0.138	0.158	0.131
7								0.114	0.151	0.134	0.133	0.121	0.121	0.146	0.17	0.165	0.159	0.13	0.144	0.144	0.145	0.118	0.129	0.112
8									0.097	0.089	0.097	0.081	0.079	0.11	0.158	0.17	0.157	0.148	0.149	0.159	0.178	0.131	0.143	0.122
9										0.097	0.097	0.094	0.091	0.128	0.184	0.188	0.174	0.166	0.156	0.166	0.184	0.148	0.16	0.146
10											0.096	0.091	0.087	0.103	0.165	0.164	0.173	0.147	0.147	0.152	0.161	0.128	0.147	0.134
11												0.069	0.06	0.113	0.16	0.168	0.172	0.143	0.122	0.158	0.17	0.128	0.144	0.127
12													0.027	0.1	0.149	0.165	0.167	0.149	0.133	0.153	0.171	0.12	0.143	0.127
13														0.1	0.151	0.161	0.17	0.146	0.131	0.151	0.164	0.116	0.142	0.126
14															0.156	0.157	0.17	0.156	0.151	0.157	0.176	0.144	0.149	0.141
15																0.098	0.158	0.149	0.161	0.16	0.169	0.147	0.163	0.158
16																	0.163	0.135	0.148	0.138	0.172	0.144	0.16	0.15
17																		0.158	0.181	0.175	0.178	0.157	0.167	0.155
18																			0.108	0.121	0.147	0.115	0.123	0.107
19																				0.148	0.16	0.124	0.136	0.125
20																					0.14	0.109	0.131	0.114
21																						0.136	0.134	0.124
22																							0.093	0.079
23																								0.085
24																								

TABLE 4. Species delimitation analyses by Geneious plug-in software (Masters et al. 2011). Calculation based on Tamura-Nei distances.

$$	n		Monophyletic	Intraspecific Distance	Interspecific Distance to Closest Group	Intra/ Inter	P ID (Strict)	P ID (Liberal)	Av (MRCA- tips)	$\begin{gathered} \mathrm{P} \\ \text { (Randomly } \\ \text { Distinct) } \end{gathered}$	Group Support	Rosenberg's P
1	11	2	yes	-	0.155	-	0.99 (0.90,1.0)	1.00 (0.96,1.0)	-	-	100\%	0.02
2	5	1	yes	-	0.155	-	0.93 (0.81,1.0)	0.98 (0.88,1.0)	-	-	100\%	$2.00 \mathrm{E}-05$
3	4	5	yes	-	0.148	-	0.87 (0.73,1.0)	0.98 (0.87,1.0)	-	-	100\%	NAN
4	9	5	yes	0.001	0.141	0.01	0.98 (0.90,1.0)	1.00 (0.95,1.0)	0.0015	0.05	100\%	0.02
5	8	6	yes	0.006	0.089	0.06	0.92 (0.81,1.0)	0.98 (0.92,1.0)	0.0069	0.05	100\%	$5.10 \mathrm{E}-05$
6	6	5	yes	-	0.089	-	0.93 (0.81,1.0)	0.98 (0.88,1.0)	-	-	100\%	$5.10 \mathrm{E}-05$
7	7	5	yes	6.11E-04	0.125	4.91E-03	0.94 (0.84,1.0)	1.00 (0.94,1.0)	3.43E-04	0.05	100\%	NAN
8	7	10	yes	$4.17 \mathrm{E}-04$	0.096	$4.36 \mathrm{E}-03$	0.94 (0.84,1.0)	1.00 (0.95,1.0)	$2.34 \mathrm{E}-04$	0.05	100\%	$9.70 \mathrm{E}-05$
9	5	9	yes	0.026	0.11	0.24	0.77 (0.65,0.90)	0.95 (0.84,1.0)	0.0208	0.05	100\%	0.07
10	11	9	yes	-	0.096	-	0.99 (0.90,1.0)	1.00 (0.96,1.0)	-	-	100\%	$3.40 \mathrm{E}-08$
11	5	13	yes	0.001	0.071	0.02	0.92 (0.80,1.0)	0.98 (0.88,1.0)	0.0024	0.05	100\%	$2.00 \mathrm{E}-05$
12	5	13	yes	0.005	0.031	0.16	0.83 (0.70,0.96)	0.96 (0.86,1.0)	0.0025	0.05	100\%	$2.20 \mathrm{E}-04$
13	7	12	yes	0.001	0.031	0.05	0.92 (0.82,1.0)	0.99 (0.93,1.0)	0.0027	0.05	99.30\%	$2.20 \mathrm{E}-04$
14	4	13	yes	-	0.119	-	0.87 (0.73,1.0)	0.98 (0.87,1.0)	-	-	100\%	$3.00 \mathrm{E}-07$
15	11	16	yes	0.002	0.114	0.02	0.98 (0.89,1.0)	1.00 (0.95,1.0)	0.0018	0.05	100\%	$2.14 \mathrm{E}-03$
16	2	15	yes	-	0.114	-	0.59 (0.44,0.74)	0.98 (0.83,1.0)	-	-	100\%	$2.14 \mathrm{E}-03$
17	29	16	yes	0.004	0.186	0.02	0.99 (0.94,1.0)	1.00 (0.97,1.0)	0.0034	0.05	100\%	$1.90 \mathrm{E}-12$
18	40	19	yes	0.006	0.125	0.05	0.98 (0.92,1.0)	1.00 (0.97,1.0)	0.0129	0.05	100\%	$4.70 \mathrm{E}-09$
19	6	18	yes	0.026	0.125	0.21	0.80 (0.67,0.92)	0.95 (0.85,1.0)	0.0223	0.05	100\%	$4.70 \mathrm{E}-09$
20	4	22	yes	0.001	0.134	0.01	0.86 (0.72,1.0)	0.98 (0.87,1.0)	0.0012	0.05	100\%	0.03
21	2	22	yes	-	0.152	-	0.59 (0.44,0.74)	0.98 (0.83,1.0)	-	-	100\%	0.03
22	3	24	yes	0.023	0.092	0.25	0.62 (0.44,0.80)	0.86 (0.72,1.0)	0.0163	0.05	100\%	$2.00 \mathrm{E}-06$
23	2	24	yes	0.021	0.094	0.23	0.47 (0.32,0.63)	0.84 (0.69,0.99)	0.0107	0.05	100\%	$4.00 \mathrm{E}-05$
24	45	22	yes	0.014	0.092	0.15	0.94 (0.89,0.99)	0.98 (0.95,1.0)	0.0197	0.05	99.90\%	$4.00 \mathrm{E}-05$

TABLE 5．Comparison of haplotype groups for standard morphological characters．

			Body annules（R）				Annules from vulva to tail tip（Rv）					Annules from anterior end to excretory pore（Rex）					Body length（L）（ $\mu \mathrm{m}$ ）					Stylet length（S）（ $\mu \mathrm{m}$ ）					Anterior end to vulva as percentage of body length （V）				
\＃	乙	Z	$\begin{aligned} & \text { EIN } \\ & \sum_{\tilde{W}}^{5} \end{aligned}$	$\bar{\Xi}$	$\underset{\Sigma}{E}$	$\frac{\Sigma}{E}$	Z	$\underset{\Sigma}{\stackrel{E}{E}}$	등	\sum	$\stackrel{⿺}{\Sigma}$	Z	$\stackrel{E}{\tilde{y y}}$	\bar{E}	\dot{E}	$\stackrel{K}{E}$	Z	$\begin{aligned} & \underset{\mathbb{E}}{\tilde{E}} \end{aligned}$	Ξ	E		Z		E	\sum	$\stackrel{⿺}{\underset{z}{x}}$	Z	EV	\bar{E}	E	$\stackrel{K}{\Sigma}$
1	6	6	90	3	86	94	6	7	1	6	8	6	25	1	24	27	6	536	52	450	593	6	56	2	53	59	6	93	1	92	94
2	4	4	140	4	137	146	4	9	1	8	9	4	38	1	37	40	4	616	53	550	663	4	60	2	59	62	4	93	1	92	94
3	3	3	74	5	69	78	3	6	1	6	7	3	22	2	20	23	3	544	56	480	585	3	72	6	65	76	3	93	1	93	94
4	6	6	79	4	76	87	6	5	1	5	6	5	22	1	21	23	5	396	14	378	413	5	55	2	53	59	5	94	1	93	95
5	4	4	98	6	89	104	4	7	2	5	10	4	28	2	26	30	4	487	40	450	535	4	54	1	53	55	3	93	3	90	95
6	6	6	97	4	92	103	6	7	1	7	8	6	29	1	28	30	6	477	44	410	520	6	54	3	48	57	6	94	3	92	99
7	4	4	98	3	96	102	4	7	1	6	8	4	26	2	23	27	4	556	84	480	650	4	73	4	67	76	3	95	1	94	96
8	3	3	99	3	97	102	3	7	1	7	8	3	29	1	28	30	3	598	43	552	638	3	84	2	82	86	3	93	1	92	93
9	3	3	93	7	87	100	3	7	0	7	7	3	26	2	24	27	3	641	105	563	760	3	84	10	77	95	3	93	1	92	94
10	3	3	104	4	100	108	3	7	1	6	8	3	30	3	28	33	3	489	154	365	662	3	79	10	72	91	3	94	0	94	94
11	4	4	100	4	96	105	4	8	1	7	9	3	27	2	25	29	4	528	26	505	565	4	71	2	70	73	4	94	1	93	95
12	2	2	90	0	90	90	2	7	0	7	7	1	23		23	23	2	551	18	538	563	2	77	2	75	78	2	93	0	93	93
13	3	3	100	6	93	105	3	7	2	5	8	3	27	2	25	28	3	606	16	593	624	3	77	3	75	80	3	93	1	92	94
14	3	3	102	5	98	107	3	8	1	7	8	3	28	2	26	30	3	653	38	615	690	3	72	1	71	72	3	92	2	90	93
15	7	7	93	3	88	97	7	7	1	6	8	4	26	2	24	27	7	558	23	528	605	7	53	3	51	59	7	92	1	91	93
16	1	1	105		105	105	1	7		7	7	1	30		30	30	1	553		553	553	1	55		55	55	0				
17	25	25	95	5	88	106	25	7	1	6	8	24	25	2	23	29	25	496	66	363	613	25	60	3	55	65	25	93	2	88	97
18	29	29	103	8	87	118	29	8	1	6	10	26	27	2	23	31	29	509	59	393	670	29	53	3	45	60	28	93	1	91	98
19	4	4	107	6	101	113	4	10	1	9	11	4	27	1	26	28	4	495	25	470	530	4	56	3	54	60	4	91	1	90	92
20	3	3	97	5	93	103	3	6	1	5	7	3	24	3	21	27	3	529	35	500	568	3	55	1	54	56	3	94	1	94	95
21	2	2	93	0	93	93	2	8	1	7	8	2	24	1	23	24	2	590	21	575	605	2	62	1	61	62	2	93	0	93	93
22	2	2	87	2	85	88	2	8	1	7	8	2	22	1	21	23	1	550		550	550	1	62		62	62	1	94		94	94
23	2	2	87	3	85	89	2	7	1	6	7	2	24	0	24	24	2	563	53	525	600	2	62	3	60	64	2	94	0	94	94
24	29	29	91	7	80	104	29	7	1	6	10	25	24	2	20	32	29	537	65	405	655	29	57	4	48	66	27	93	1	91	95

Different tree building methods on the reduced 82-taxa dataset produced strong node support values for haplotype groups. In fifteen of the sixteen haplotypes groups with haplotype diversity, maximum likelihood and neighbor-joining trees had bootstrap values of 100 . Group 13 had a bootstrap value of 99 in both analyses. Bayesian inference produced trees with posterior probabilities of 1.0 for 14 groups, with groups 24 and 13 expressing values of 0.99 .

Additional measures of group distinctiveness (Table 4) were tested on the full dataset with the species delimitation plug-in from Geneious (Masters et al. 2011). Rosenberg's test (Rosenberg 2007) for reciprocal monophyly ($\mathrm{P}(\mathrm{AB})$) and the statistic for calculating clade distinctiveness by Rodrigo et al. (2008) both assess the probability that the observed patterns were due to random coalescent processes. Both statistics strongly supported the distinctiveness of the haplotype groups, rejecting as unlikely distinctiveness and monophyly arising as a result of chance. Similarly, the probability of correctly identifying unknown members of the haplotype groups as a function of the ratio of intraspecific differentiation to the distance to the nearest haplotype group was calculated under strict and liberal criteria (P ID (Strict) and P ID (Liberal)) in Table 4. Under the liberal criteria where the unknown member of the group must fall within or sister to the group, all probabilities were 95% or higher except for groups 22 and 23. Under the strict criteria where the unknown member must fall within the group and not in the sister group, 19 of the groups had mean probabilities of 80% or better of being correctly identified (Table 4).

TABLE 6. Diagnostic characteristics of seven species of Criconematidae from Brzeski et al. 2002a, 2002b.

Species	Stylet length	R	Rex	RV	RVan	Ran	V	VL/VB	Anast- omoses
Mesocriconema curvatum	$47-68$	$74-106$	$20-29$	$5-10$	$0-3$	$2-6$	$92-96$	$0.7-1.2$	0-few
M. discus									

TABLE 6. (Continued)

Species	Annule margin	Vagina	Anterior vulval lip	Tail shape	L	Submedian lobes
Mesocriconema curvatum	smooth	straight	lobes	rounded	$0.29-0.56$	+
M. discus		sigmoid		conical-rounded	$0.45-0.65$	+
M. kirjanovae	smooth to crenate	straight	lobes	conical-acute	$0.35-0.79$	+
M. onoense	smooth	straight	flap-lobes	rounded	$0.37-0.67$	+
M. ornatum	smooth	straight	sharp-lobes	conical-rounded	$0.33-0.52$	+
M. rusticum	smooth	straight	simple	rounded	$0.34-0.52$	flattened
M. xenoplax	smooth to irregular	sigmoid	lobes	conical-rounded	$0.40-0.75$	+
Criconemoides	irregular to smooth				conical	$0.32-0.62$

Evidence from morphology, ecology, and geography. Key morphological characteristics of the 24 haplotype groups in the dataset are summarized and illustrated in Figure 3. Scanning electron microscopy is often used as a tool to resolve character states that are difficult to interpret under light microscopy, but since SEM preparation is a destructive process, it is not possible to obtain DNA from the identical specimens used in SEM. Emphasis in this study is placed on those diagnostic characters that are likely to be used in routine species identification. Based on
specific diagnostic traits or measurements, five of the haplotype groups generated by COI analysis each appear to be associated with a discrete morphospecies:

Haplotype group 2-Mesocriconema onoense (Luc, 1959) Loof \& De Grisse, 1989
Haplotype group 5-M. rusticum (Micoletzky, 1915) Loof \& De Grisse, 1989
Haplotype group 7—M. discus (Thorne \& Malek, 1968) Loof \& De Grisse, 1989
Haplotype group 17—M. inaratum (Hoffmann, 1974) n.comb.
Haplotype group 19—M. kirjanovae (Andrássy, 1962) Loof \& De Grisse, 1989
Haplotypes groups 8-14 generally conform morphologically to Mesocriconema xenoplax (Raski, 1952) Loof \& De Grisse, 1989 and collectively belong to a monophyletic group (Figs. $1 \& 2$). The remaining haplotype groups ($1,3,4,6,15,16,18,20-24$) did not associate with any single morphospecies description. For example, specimens in haplotype groups 1,15 , and 16 conform in part to M. ornatum (Raski, 1958) Loof \& De Grisse, 1989. Similarly, groups 4, 18, and 20-24 could be placed in either morphospecies M. curvatum (Raski, 1952) Loof \& De Grisse, 1989 or M. ornatum depending on the degree of annule crenation on juvenile cuticles and the complexity of the labial plates. A ninth morphospecies, M. sphaerocephalum did not group with other members of the in-group Mesocriconema and is the subject of a separate study (T. Powers, in prep). Table 6 presents morphological measurements from the compendia of Brzeski et al. 2002a and Brzeski et al. 2002b in which were compiled some of the published species characteristics discussed in the section below.

Haplotype groups

Groups 1, 15 and 16

Morphological evidence. These three haplotype groups conform, in part, to the morphospecies Mesocriconema ornatum (Raski, 1958) Loof \& De Grisse, 1989. In the original description of M. ornatum, described by Raski (1952) under the name Criconemoides cylindricum, the species was diagnosed by the absence of labial plates, possession of small submedian lobes, and the outline of the anterior vulval flap, with two distinct "points". Markings on the annule margins of juveniles were also identified as a differentiating character when compared to M. curvatum and M. rusticum, which possess smooth annule margins in the juvenile stages. Subsequent investigators have differed in the interpretation of these characters. Loof \& De Grisse, (1973, Fig. 2) presented line-drawings of face views with submedian lobes arranged from the smallest (M. ornatum) to the largest (M. surinamensis). Later the same authors show M. ornatum with small labial plates and four relatively large submedian lobes approximately the same size as M. xenoplax (Loof \& DeGrisse, 1989, Fig. 2b). In an examination of African M. ornatum specimens from four populations, Luc (1970) also observed large submedian lobes with considerable variation in the size of the labial plates, and illustrated a range of vulval projections from undulating to sharply pointed. SEM face views of M. ornatum in Mulawarman \& Geraert (1997) show large submedian lobes with a longitudinal groove as frequently observed in M. curvatum, labial plates flanking the labial disc, and the anterior annule of the vulva with minute points. The key to Mesocriconema spp. in Geraert (2010) requires decisions about the size of submedian lobes and the relative development of the labial plates, both problematic decisions for this seemingly polymorphic species.

In this study isolates from four southeastern US states, Texas, New Mexico and Costa Rica, contained adult specimens with measurements that conformed to M. ornatum and had associated juveniles in the population with crenate margins on the annules (Figs. 4F, G, I, J, 17D). Analysis of COI placed these specimens in three separate and distinct haplotype groups. Haplotype group 1 (Figs. 4G-M) included specimens from Byron, Georgia, a locality approximately 100 miles (160 km) north of the type locality in Albany, Georgia. Adult females in group 1 have moderately sized submedian lobes and lateral labial plates (Figs. 4I, K, L), and virtually no projections on the annule forming the anterior lip of the vulva (Fig. 4H). Haplotype group 15, which also conformed to M. ornatum, was nearly identical morphologically to haplotype group 1, the only exception being the presence of moderately pointed projections on the anterior vulval annule (Fig. 4D). Both haplotype groups include specimens with stylet and body lengths that slightly exceeded the upper range of stylet length $(56 \mu \mathrm{~m})$ and body length ($520 \mu \mathrm{~m}$) reported
in the compendium of Brzeski et al. (2002b) (Table 6). Lateral labial plates could be observed in both haplotype groups by SEM and light microscopy, and were present in adults and juveniles. The "bluntly rounded almost truncate tail" as described and illustrated by Raski (1952) is similar in form to many of the Mesocriconema specimens collected in this study. We suspect that nematodes identified as "short-stylet" forms of M. xenoplax from bentgrass in South and North Carolina reported by Zeng et al. (2012) and those associated with Bermuda grass and river cane in Arkansas (Cordero et al. 2012) may be members of either haplotype group 1 or 15 . Only two specimens, a juvenile and adult female from New Mexico, were included in Group 16. Crenate annule margins on the juvenile (Fig. 17D), female morphometrics, and a shared ancestry with Group 15 support its identity as M. ornatum.

Ecological and geographic evidence. All members of groups 1, 15, and 16 were obtained from agricultural sites. The majority of the M. ornatum specimens were collected from managed turf sites or turf associated with the understory of orchards. The lack of haplotype diversity in group 1 associated with a relatively broad geographic range suggests that the haplotype was spread recently, possibly through the movement of turf or other agricultural commodities.

Mesocriconema

FIGURE 3. Key morphological characteristics of Mesocriconema. Images from scanning electron microscopy and light microscopy are combined to enhance understanding of the morphological characters. Measurements of specimens of Criconematidae are generally expressed in micrometers and in terms of the number of annules (R) between two morphological landmarks. $\mathrm{R}=$ total number of annules from anterior to posterior end or the body. $\mathrm{Rex}=$ number of annules from anterior end to the excretory pore. $\mathrm{Rv}=$ number of annules from the vulva opening to the posterior end of the body. $\mathrm{V}=$ position of the vulva expressed as a percentage of total body length, and eso=length of the esophagus (pharynx) from anterior end to the esophageal/ intestinal junction.

FIGURE 4. Haplotype Groups 1 (G, H, I, J, K, L, M) and 15 (A, B, C, D, E, F). Specimens conforming to morphospecies Mesocriconema ornatum. Location data for NID numbers are in Table 1. Adult females=A, B, C, D, E, H, L, M. Juveniles=F, G, I, J, K. Specimens for SEM images I, J, K were from a peach orchard in Alabama.

Group 2: M. onoense (Luc, 1959) Loof \& De Grisse, 1989

Morphological evidence. A single isolate collected from a turf research facility in Alabama contained specimens notable by the large number of annules on the body, with all specimens having more than 137 annules (Fig. 5A; Table 5). Other discriminating features included the large number of annules anterior to the excretory pore (Rex) (Figs. 5C, D) and the number of annules between the vulva and tail tip (Rv) (Fig. 5B). Only two Mesocriconema spp. reported from North America possess similar numbers of annules: M. onoense (Luc, 1959) Loof \& De Grisse, 1989 and M. canadense (Ebsary, 1981) Loof \& De Grisse, 1989. M. canadense differs from haplotype 2 and M. onoense in its lack of submedian lobes, crenate female annuli, and short stylet. Mesocriconema onoense has been reported from rice in Louisiana (Hollis 1977) and recently from grass and sugar maple (Acer saccharum) in Arkansas (Cordero et al. 2012). The original description published in 1959 was based on six specimens recovered
from the roots of sugar cane (Saccharum spp.) in Venezuela. In the original description the anterior lip of the vulva is described as rounded with a central bulge. NID 1250 (Fig. 5F) has small, pointed projections, whereas NID 1249 and 1253 (Figs. 5E, G) have a smooth anterior lip with no projections. Adult and juvenile annule margins are smooth (Figs. 5H, I).

Ecological and geographic evidence. The reported distribution of M. onoense in North America is limited to the south-central states of Alabama, Louisiana, and Arkansas. We also have recorded the presence of the morphospecies in Bermuda grass turf plots in Alabama and from Big Thicket National Preserve in Texas.

FIGURE 5. Haplotype Group 2 (A, B, C, D, E, F, G, H, I). Specimens conforming to morphospecies Mesocriconema onoense. Adult females=A-H. Juvenile $=$ I.

Group 3: Mesocriconema sp.

Morphological evidence. Uncertainty exists regarding the placement of this haplotype group within Mesocriconema. From a morphological perspective, rounded submedian lobes appear in lateral view of NID 1101 (Fig. 6B). Submedian lobes were not clearly evident in the other adult specimens (Figs. 6C, D). The vulva was similarly ambiguous since specimens were only observed in the lateral view and the annule immediately anterior to the vulva was not markedly different from other body annules (Figs. 6A, E). The body annules were not strongly retrorse and the single juvenile observed exhibited faintly crenate margins (Fig. 6G). The specimens conformed in morphometrics, with the exception of a larger body length, to M. maritimum (De Grisse, 1964) Loof \& De Grisse, 1989, a species originally described from Belgium. Line drawings in Geraert (2010, Fig. 31), particularly of the variation in the labial region, bear a striking resemblance to the Montana specimens examined in this study. If upon further investigation the vulva is shown to be closed, the specimens could be considered Criconemoides informis (Micoletzky, 1922) Taylor, 1936, a presumed cosmopolitan species (Geraert 2010). Support values strongly supported group 3 as a distinct lineage, but support at the higher nodes linking this haplotype group with others in the Mesocriconema data set was lacking in all three tree building methods.

Ecological and geographic evidence. Specimens belonging to this group were only collected from an alpine meadow in Gallatin County, Montana.

FIGURE 6. Haplotype Group 3 (A, B, C, D, E, F, G). Specimens of uncertain morphospecies designation. Adult females= A-F. Juvenile=G.

Groups 4, 18, 20-24: M. curvatum morphotypes

Morphological evidence. Mesocriconema specimens that conform, in part, to the morphological description of M. curvatum are widespread in North American grasslands. Fifteen grasslands from 10 states sampled in this study contained specimens exhibiting the morphological features of the species. However, it is not always clear from the taxonomic literature what diagnostic features delimit M. curvatum. The Commonwealth Institute of Helminthology (C.I.H.) description emphasizes "four well-developed, separate submedian lobes with rounded anterior margins" with the "first annule broken up into labial plates, often irregularly" (Loof 1974). Separation from M. xenoplax is based on the shorter stylet of M. curvatum and the straight vagina of M. curvatum versus the sigmoid vagina shape associated with M. xenoplax (although see below for additional commentary on this character). In Geraert (2010) the submedian lobes are described as "conical in shape, lateral plates present but not very pronounced" and the "anterior vulva lip variable usually with two rounded lobes". The tail is described as variable, more or less rounded with the tip single or sometimes multi-lobed. Geraert (2010) also reported that young juveniles have irregular annuli margins, but the larger juveniles have smooth margins. Recent published assessments of M. curvatum diagnostic characters have emphasized that M. curvatum lacks an elevated labial disc, and the labial plates are described as "minute or obvious" (Cordero et al. 2012) or irregular (Zeng et al. 2012). The full range of morphological variability is evident within the COI haplotype groups that conform and generally key to M. curvatum in Geraert (2010) or Brzeski et al. (2002b).

Group 4 stands out among the seven Mesocriconema curvatum-like haplotype groups by being the only group solely represented by specimens collected from agricultural samples. This may be a significant clue to its identity and origin since the type host of M. curvatum from Colma, California, was snapdragon (Antirrhinum sp.), an old world plant species. Other hosts mentioned in the original description included lupine (Lupinus sp.), apple (Malus
sylvestris), an unidentified plant species associated with a home garden, grassy field, vegetable garden, and a potato field (Raski 1952). Group 4 has the shortest mean body length ($396.2 \mu \mathrm{~m}$), smallest Rv value (5.3), and the second smallest R value (79.3) among all 24 haplotype groups. One of the three juveniles included in group 4 had crenate annules (Fig. 7G), whereas the others appeared smooth.

FIGURE 7. Haplotype Group 4 (A, B, C, D, E, F, G). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A, B, D-F. Juveniles=C, G.

The two largest groups in the dataset, Group 18 and 24 represented by 40 and 45 specimens, respectively, were collected only from central U.S. grasslands and savannas and never from agricultural soils (Table 1). Mean morphometric values of body length and annule number fell within reported ranges of previous studies as compiled in the compendium of Brzeski et al. (2002b), however, select individual specimens in both haplotype groups exceeded previously reported upper limits for both characters (Table 5). The anterior regions of the two groups are compared in Figs. 19A-D and 26A-F. Both groups possess a relatively robust stylet with strong stylet knobs. The labial region in group 18 appears to have more prominent submedian lobes than group 24. SEM images (Figs. 19E-G) derived from individuals selected from Kalsow Prairie in Iowa, where only haplotype 18 has been observed, display rounded submedian lobes with a central indentation, and labial plates with varying degrees of fragmentation. In several cases the lateral plates fuse to form half a labial annule, which complicates interpretations of lateral views when using light microscopy. Lateral and ventral views of the tail region of both groups can be compared in Figures 20 and 27. One obvious feature is that the vagina in both groups can appear either straight, as
a diagonal line from midbody/uterus to the vulva, or it can assume a sigmoid shape, with the appearance of a bend in the vagina either at the point it connects to the uterus or as it nears the vulva. Interpretation of this taxonomic character may have led to the recognition of short-stylet forms of M. xenoplax as discussed above (Hoffman 1974). A second taxonomic character within both haplotypes is the size and shape of the projections extending from the anterior vulval annule. The projections range from low and blunt (Figs. 20G, H; Figs. 27G, I, K) to high and pointed (Figs. 20 L, 27J). All specimens of M. curvatum collected from Kalsow Prairie belong to haplotype group 18. SEM views of pointed vulval projections from the Kalsow Prairie population are seen in Figs. 21 A-D. Another taxonomic feature sometimes used to discriminate M. curvatum from M. ornatum is the presence or absence of crenation on the annule margins of the juveniles. Crenate juvenile cuticle was observed in both groups, which tended to be more prominent on the posterior portion of the body, although the degree of crenation ranged from faint to strong (Figs. 21E-J; Figs. 28A-C). Adults in groups 4, 18 and 24 all possessed smooth annule margins. Haplotype groups 20-23 (Figs. 23-25) each included $2-4$ specimens. The specimens in these groups usually keyed to M. curvatum in Geraert (2010) but too few individuals were available to assess morphological variation.

Ecological and geographic evidence. Colma, CA, just south of San Francisco, is the type locality for Mesocriconema curvatum. The original description mentioned other locations for the species in California, North Carolina, New York, Vermont and Nevada, generally associated with agricultural hosts. Haplotype groups 18 and 24 have never been recovered from agricultural hosts nor have they been recorded outside of native grasslands in the central U.S. Therefore, in spite of their morphological similarity it is unlikely that they belong to M. curvatum. Previous records of M. curvatum in native central U.S. grasslands probably refer to these haplotype groups (Schmitt \& Norton 1972; Norton \& Ponchillia 1968; Powers et al. 2010). Group 4 specimens were recovered from managed agricultural ecosystems in Missouri, Montana, Nebraska, Wisconsin, and Wyoming. Additional studies are necessary to determine if this haplotype group is actually M. curvatum.

FIGURE 8. Haplotype Group 5 (A, B, C, D). Specimens conforming to morphospecies Mesocriconema rusticum. Adult females=A-D.

Morphological evidence. Eight specimens in the dataset formed group 5, which morphologically conformed to Mesocriconema rusticum. Half of the specimens were collected from agricultural ecosystems and were isolated from soils in five states (Table 1). M. rusticum is a cosmopolitan species that is commonly found in turf and vegetable production (Wouts 2006). Like M. discus it is a species morphologically identifiable by its large submedian lobes, which when viewed in lateral profile with light microscopy present a truncated appearance to the anterior end (Figs. 8A, B). Several authors also have considered the blunt or multi-lobed, truncated tail terminus with a slight dorsal bend (Fig. 8C) as a diagnostic character (Raski 1952; Wouts 2006; Geraert 2010). In describing Criconemoides lobatum, later synonymized with M. rusticum by Loof (1965), Raski (1952) illustrated the vulva without projections on the anterior lip. No vulva projections were observed in the females in group 5. SEM face views of M. rusticum from Vermont were provided in Powers et al. (2010).

Ecological and geographic evidence. Wouts (2006) noted that Mesocriconema rusticum has a wide distribution in New Zealand, was not very common, and was mainly associated with cultivated plants. The specimens in the current study were also widespread, but included a mixture of cultivated plants and native grasslands. Despite its wide geographic range in North America, relatively little within-group COI variation was detected for this lineage (Table 4).

FIGURE 9. Haplotype Group 6 (A, B, C, D, E, F, G, H, I, J). Specimens of uncertain morphospecies designation. Adult females=A-J. Specimen J is from Brookings, South Dakota.

FIGURE 10. Haplotype Group 7 (A, B, C, D, E, F). Specimens conforming to morphospecies Mesocriconema discus. All specimens from type locality in Brookings, South Dakota. Adult females=A, C-F. Juvenile=B.

Group 6: Mesocriconema sp.

Morphological evidence. Specimens included in haplotype group 6 were recovered only from a single location in South Dakota. The specimens key to Mesocriconema denoudeni (De Grisse, 1967) Loof \& De Grisse, 1989 in Geraert (2010). The first couplet of that key requires decisions about the number of anastomoses in the lateral field, which varied from zero to more than ten in the midbody of adult females in this collection (Figs. 9H, I). The labial region possessed moderately developed submedian lobes (Figs. 9D, E) and the anterior annule of the vulva lacked projections (Figs. 9B, C, F, G, J). Mean values of R and Rex for specimens in group 6 do not fit within the range of M. denoudeni in the Brzeski et al. (2002b) compendium.

Ecological and geographic evidence. Group 6 specimens were obtained around the roots of thistle (Cirsium sp.). The collection site was also the type locality of M. discus. No COI haplotype diversity was observed among the six specimens analyzed.

Group 7: M. discus (Thorne \& Malek, 1968) Loof \& De Grisse, 1989

Morphological evidence. Mesocriconema discus (Thorne \& Malek, 1968) Loof \& De Grisse, 1989 was recovered from its type locality " 2 miles west of Brookings, S. Dak." in a lowland, wet slough. A second discovery of M. discus occurred in Doolittle Prairie, a wet, pothole prairie in central Iowa. The species also was reported previously from Kalsow Prairie, a native tallgrass prairie in northeast Iowa (Hoffmann 1974). In the original description and in the present study, no specific plant host was identified.

Taxonomically M. discus has been variously interpreted, in part because of the ambiguous original description of the labial region which mentioned "four broad flat lobes" but illustrated the labial region as a single continuous disc (Ebsary 1982; Brzeski 2002b; Powers et al. 2010). An earlier 18S barcode analysis grouped M. discus together with several GenBank accessions of M. xenoplax collected from Europe, but existing outside of a clade of M. xenoplax specimens from North America which included specimens from the type locality of M. xenoplax (Powers et al. 2011). COI analysis strongly supports M. discus as a distinct group (Table 2). Only two haplotypes separated by a single nucleotide substitution were observed among the seven COI group 7 sequences, whereas the smallest mean genetic distance (P-value) to another Mesocriconema sequence was over 11\% (Table 3).

FIGURE 11. Haplotype Group 7. Adult female paratype specimens of Mesocriconema discus (A, B, C).
Topotype specimens are similar to a paratype specimen (Figs. 10-12). Seen in light microscopy, the adult female cephalic profile exhibits large flattened lobes, often projecting above the central labial disc (Figs. 10C, D; Fig. 11A). SEM face views of topotype specimens show four greatly enlarged submedian lobes surrounding a round labial disc (Figs. 12A-E). The submedian lobes may obscure the first labial annule, which in some specimens is reduced to two lateral labial plates, and in others there exists a connection between the lateral plates and a portion of the first annule. The next annule is usually entire, but irregular in shape. Not mentioned in the original description but present on all topotypes are two large pointed projections located on the anterior vulval annule (Fig. 10F; Figs. 12F-H). One projection can be seen clearly on the paratype specimen (Fig. 11B). A sigmoid vagina was illustrated in the original description. Paratype (Fig. 11C) and topotype (Fig. 10E) specimens display varying degrees of this character. The annule margins of the adult female cuticle are smooth. Juveniles have crenate margins over the entire body; these crenations are most strongly expressed in the posterior two-thirds of the body (Fig. 10B).

Group 7

FIGURE 12. Haplotype Group 7. SEM images of topotype adult female specimens of Mesocriconema discus. Labial region with large submedian lobes (A, B, C, D, E), vulva with anterior annule projections (F-H).

FIGURE 13. Haplotype Groups 8 (A, B) and 9 (C, D, E, F). Specimens conforming to morphospecies Mesocriconema xenoplax. Adult females=A-F.

Other species with large submedian lobes are M. juliae Crozzoli \& Lamberti, 2001, M. napoense (Talavera \& Hunt, 1997) Luc \& Baujard, 1998, M. planilobatum (Talavera \& Hunt, 1997) Luc \& Baujard, 1998, M. rusticum, M. sphaerocephaloides (De Grisse, 1967) Loof \& De Grisse, 1989, M. surinamense (De Grisse \& Maas, 1970) Loof \& De Grisse, 1989, M. talensis (Chaves, 1984) Loof \& De Grisse, 1989, and M. yossifovichi (Krnjaic, 1968) Luc \& Raski, 1981. None of these species appear to possess large vulva projections. Cordero et al. (2012) described a collection of M. surinamense with small vulva projections from grass and maple in the Ozark National Forest and Savoy, Arkansas. Otherwise, morphological features of the Arkansas specimens closely match those of M. discus.

Ecological and geographic evidence. Based on collections in this study, Mesocriconema discus appears to be a species endemic to central North American grasslands.

Groups 8-14: M. xenoplax morphotypes

Morphological evidence. Groups $8-14$ constitute seven lineages that are collectively supported as a monophyletic group by COI. They are also united by mean stylet lengths that exceed $70 \mu \mathrm{~m}$. As a group they tend to be among the longest nematodes in the dataset, with some adult females exceeding $700 \mu \mathrm{~m}$ in body length (Table 5). The labial region in lateral view often gives the impression of a complex pattern of labial plates and divided annules. SEM supports this interpretation (Fig. 14C, Fig. 15F), but some individuals display a simple pattern of four rounded submedian lobes surrounding a rectangular oral disk, without any labial plates (Figs. 15G, H). Variability can also be observed in the shape of the vagina, which ranges from distinctly sigmoidal (Figs. 13F, 14H) to relatively straight (Figs. 13B, 15B, D). With allowances for variability in the shape of the vagina, the specimens in groups $8-14$ key to M. xenoplax in Geraert (2010).

FIGURE 14. Haplotype Groups 10 (A, B, C, D, E, F) and 11 (G, H, I, J, K). Specimens conforming to morphospecies Mesocriconema xenoplax. Juvenile=A, Adult females=B-K. SEM images of specimens from a peach orchard in Georgia.

FIGURE 15. Haplotype Groups 12 (A, B) and 13 (C, D, E, F, G, H). Specimens conforming to morphospecies Mesocriconema xenoplax. Adult females=A-H. SEM images of specimens from British Columbia.

The seven well-supported subgroups within the morphospecies exhibit mean genetic distances of 2.7-12.8\%. Interestingly, two isolates from commercial peach production, groups 8 and 10 from South Carolina and Georgia, respectively, fall into separate subgroups with a pairwise mean genetic distance of 8.9%. The peach isolate COI sequences from Byron, Georgia (Group 10) identically match specimens from native hardwood forest in Northern Florida. Some regional geographic patterns may exist among M. xenoplax COI subgroups.

Ecological and geographic evidence. Mesocriconema xenoplax is widely acknowledged as a cosmopolitan species (Andrássy 2007; Peneva et al. 2000; Geraert 2010; Wouts 2006). In North America M. xenoplax is the most frequently reported species in its genus (Norton et al. 1984). Reported host associations of M. xenoplax range from grasses to hardwood trees in both agricultural and native habitats. As mentioned above, the recognition of "shortstylet" forms of M. xenoplax from monocot hosts should be confirmed by haplotype analysis (also see Thorne 1961 regarding recognition of these variant specimens). All of the specimens in haplotype groups $8-14$ were associated with woody vegetation. Group 14 specimens collected from Nine-Mile Prairie in Nebraska were associated with smooth sumac (Rhus glabra) encroaching into the grassland from bordering riparian vegetation. The type host for M. xenoplax is cultivated grape Vitis vinifera var. sulanina (Vitis longii rootstock) near Fresno, California. It is possible that M. xenoplax was transported to Europe on native North American Vitis rootstock used for grafting resistance to Phylloxera. Conversely, M. xenoplax could have accompanied the initial introduction of European Vitis vinifera into North America. Undoubtedly, global viticulture provided an opportunity for spread of the species. Another possibility is that host associations of an M. xenoplax ancestor extended across plant species of the late Cretaceous ($70-65 \mathrm{mya}$) when North American and Eurasian flora communities exhibited a high degree of similarity (Graham 1999). Testing these biogeographic hypotheses will require additional sampling.

FIGURE 16. Haplotype Group 14 (A, B, C). Specimens conforming to morphospecies Mesocriconema xenoplax. Adult females=A-C.

Group 17: Mesocriconema inaratum new combination

= Discocriconemella inaratus Hoffman, 1974: 212; Powers et al., 2010: 35 (as D. inarata).
Morphological evidence. This species stands out among the Meoscriconema species examined in this study based on its large, expanded cephalic annule and lack of submedian lobes as seen in SEM and light micrographs of specimens from Nebraska prairies (Figs. 18I-M). In lateral view at X1000 magnification (Figs. 18N, O), the broad, continuous first labial annule helps differentiate this species from other Mesocriconema groups that are typically sympatric in North American tallgrass prairies. The open vulva generally possesses two moderately-sized
projections on the anterior annule (Figs. 18A-E). The systematics of this species, including comparative morphology and a phylogenetic analysis with 18 SrDNA , ITS1, and cytochrome b nucleotide sequences, was addressed by Powers et al. (2010). The addition of COI data in the current study strengthens the previous contention that M. inaratum does not belong in the genus Discocriconemella. Additional evidence of its position within Mesocriconema can be seen on the COI amino acid tree (http://nematode.unl.edu/COI-ProteinTree_4-2514.html). Therefore, we transfer D. inarata to Mesocriconema as M. inaratum.

Ecological and geographic evidence. In our collections this species is commonly associated with prairie and rough dropseed, Sporobolus heterolepsis and S. asper, respectively. Mesocriconema inaratum was found in NineMile and Spring Creek Prairies, two remnant tallgrass prairies in eastern Nebraska, and Kalsow Prairie, the type locality in northwestern Iowa.

FIGURE 17. Haplotype Group 16 (A, B, C, D). Specimens conforming to morphospecies Mesocriconema ornatum. Adult female=A-C. Juvenile=D.

Group 19: M. kirjanovae (Andrássy, 1962) Loof \& De Grisse, 1989
Morphological evidence. Specimens from Roth Prairie, Arkansas, stood out among other Mesocriconema in the dataset by their relatively acute, pointed tail (Figs. 22A, C, D). Additionally, large mean Rv values and other morphological characters (Table 5), as well as a recent report of M. kirjanovae from Arkansas (Cordero et al. 2012), lead to a tentative identification of these specimens as M. kirjanovae. Geraert (2010) reported that the annule projections anterior to the vulva were not large, but the projections observed in group 19 could be considered large (Fig. 22B).

Ecological and geographic evidence. Mesocriconema kirjanovae was recently reported for the first time from North America (Cordero et al. 2012), at Pine Tree, Arkansas, approximately 108 km from Roth Prairie, where the M. kirjanovae specimens in this dataset were obtained. Host information from Cordero et al. (2012) included an
unidentified grass, young pines, and hickory (Carya sp.). The Roth Prairie sample was obtained from soil near unidentified prairie grasses. The type locality of M. kirjanovae is listed as soil from marshy meadow grass near Budapest, Hungary (Loof \& De Grisse, 1989). Additional specimens collected, but not used in COI analyses, were found at Big Thicket National Preserve in Texas.

FIGURE 18. Haplotype Group 17 (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O). Specimens conforming to morphospecies Mesocriconema inaratum. Adult females=A-E, G-O. Juvenile=F. Specimens G,O=from type locality. SEM images of specimens from Nine-mile Prairie, NE.

Group 18

FIGURE 19. Haplotype Group 18 (A, B, C, D, E, F, G). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-G. SEM specimens from Kalsow Prairie, IA.

Discussion

The observations made in this study have bearing on two frequently mentioned features of nematodes, their potentially large contribution to overall animal biodiversity on earth and the cosmopolitan distribution ascribed to many species. The analysis of COI for the Mesocriconema dataset illustrates that the determination and recognition of taxonomic units could strongly influence interpretations of nematode biodiversity and biogeography. Specimens contributing to seven of the COI groups recognized in this dataset could be morphologically identified as Mesocriconema curvatum. That broad recognition, however, obscures differences in genetics, distribution, and host associations. The 40 specimens of group 18, which included 9 COI haplotypes, all came from central U.S. tallgrass prairies with the exception of a single haplotype collected from the mixed grassland region of central Kansas. Similarly the 45 specimens and 15 haplotypes of group 24 were distributed across a wider range of native grasslands from southern Wisconsin to Roth Prairie, a rare tallgrass remnant of the former Grand Prairie in eastern Arkansas. In contrast, group 4, also potentially recognized as a member of morphospecies M. curvatum, was collected from Montana to Missouri but only from agricultural soils. These biogeographic and host associations
would be obscured under a broad morphological definition of M. curvatum as suggested in the compendium of Brzeski (2002b). It is clear that while a morphospecies recognized as M. curvatum could be considered widespread in North America, the COI lineages display a more nuanced view of the morphospecies distribution.

FIGURE 20. Haplotype Group 18 (A, B, C, D, E, F, G, H, I, J, K, L). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-L.

FIGURE 21. Haplotype Group 18 (A, B, C, D, E, F, G). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-D. Juveniles=E-J. SEM specimens A, B from Sheeder Prairie, IA, C, D, G from Kalsow Prairie, IA.

FIGURE 22. Haplotype Group 19 (A, B, C, D, E, F, G, H). Specimens conforming to morphospecies Mesocriconema kirjanovae. Adult females=A-D, F-H. Juvenile=E.

Unrecognized variation in Mesocriconema ornatum may have implications for management of pest species. Groups 1 and 15 both conformed to the morphospecies description and were only isolated from agricultural soils, yet the mean pairwise p-distance of the COI haplotypes of the two groups was 21.6%. This genetic distance, which is almost certainly an underestimate of the actual genetic distance (Srivathsan \& Meier 2012), signals a possible difference in nematode physiology that could compromise management approaches such as biological control or resistant varieties which are based on highly specific host-parasite interactions. Furthermore, the low nucleotide diversity of both groups and their absence from native plant communities suggest an exotic origin of these two haplotype groups. M. xenoplax, best known as a cosmopolitan pest species of vineyards and orchards, might also be expected to have haplotype distributions heavily influenced by agricultural commerce (Wouts 2006). Haplotype groups $8-14$ formed a monophyletic group and conformed to the morphospecies definition of M. xenoplax, but deep divisions in the clade present a complex pattern of both geographic localization and possible long distance dispersal associated with agriculture. It is possible that these specimens exhibit genetic breaks consistent with a phylogeographic structure reflecting ancient host associations. Overlying this ancient geographic structure may be a subset of haplotypes associated with agricultural commodities and recent anthropogenic dispersal. More intensive sampling of this group will be necessary for an understanding of its phylogenetic and biogeographic patterns.

It is quite likely that additional sampling of Mesocriconema will continue to reveal what appear to be cryptic species within Linnaean morphospecies. This is not unexpected. Molecular analyses in numerous well-studied nematode taxa such as Caenorhabditis (Kiontke et al. 2011), Trichuris (Callejón et al. 2013), Pristionchus (Kanzaki et al. 2012), and Globodera (Handoo et al. 2012) have discovered genetic variation that has forced reconsideration of diagnostic characters. In the case of Mesocriconema, morphological variation in key diagnostic characters within a haplotype group and overlap in morphological characters between groups creates major

FIGURE 23. Haplotype Groups 20 (A, B, C) and 23 (D). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females $=\mathrm{A}-\mathrm{D}$.

FIGURE 24. Haplotype Group 21 (A, B, C, D, E, F). Specimens conforming to morphospecies Mesocriconema curvatum. Adult female $=\mathrm{A}-\mathrm{F}$.

FIGURE 25. Haplotype Group 22 (A, B, C, D). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-D.

Group 24

FIGURE 26. Haplotype Group 24 (A, B, C, D, E, F). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-E. Juvenile=F.

FIGURE 27. Haplotype Group 24 (A, B, C, D, E, F, G, H, I, J, K). Specimens conforming to morphospecies Mesocriconema curvatum. Adult females=A-K.

Group 24

FIGURE 28. Haplotype Group 24 ($\mathrm{A}, \mathrm{B}, \mathrm{C}$). Specimens conforming to morphospecies Mesocriconema curvatum. Juvenile=A-C.
difficulties in identification and the recognition of species boundaries. Obvious examples include the variation in labial plates in SEM face views, the degree of crenation on annule margins of juveniles, the size of the projections in the anterior lip of the vulva, and the interpretation of the shape of the vagina. These diagnostic morphological characters need to be systematically re-evaluated within the context of molecularly derived groupings in order to fully realize the information content of the taxonomic units. That realization will, in turn, allow nematode taxonomy to better integrate with and contribute to larger questions of global biodiversity.

Acknowledgements

This research was supported by the National Science Foundation, Proposal DEB-1145440. We would like to thank the following people for contributing specimens: Kathy Lawrence, Auburn University; Gary Lawrence, Mississippi State University; Tim Todd, Kansas State University; Jim Smolik and Larry Osborne, South Dakota State University; Steve Thomas and Jackie Beacham, New Mexico State University; Deb Neher, University of Vermont; Dave Wedin and Tara Wood, University of Nebraska; Bob Robbins, University of Arkansas; Andy Nyczepir, USDA Southeastern Fruit and Nut Research Laboratory; Paula Agudelo, Clemson University; Tad Weaver, Montana State University; Glen Dappen, Nebraska Wesleyan University; Erik Oberg, National Park Service; Alejandro Esquivel, National University of Costa Rica; Rich Henderson, Prairie Enthusiasts of Wisconsin; Al Swain, Friends of Blue Mound State Park. Thanks also to Spring Creek Prairie Audubon Center, Denton, NE; Organization of Tropical Studies; George Washington Memorial Parkway, study\#GWMP-00090 and Great Smoky Mountains National Park, study\#GRSM-01076.

Literature cited

Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716-723. http://dx.doi.org/10.1109/tac.1974.1100705
Andrássy, I. (2007) Free-living nematodes of Hungary. Pedozoologica Hungarica. No 4. Hungarian Natural History Museum, Budapest, 496 pp .
Artois, T., Fontaneto, D., Hummon, W.D., McInnes, S.J., Todaro, M.A., Sørensen, M.Y. \& Bullini, A. (2011) Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In: Fontaneto, D. (Ed.), Biogeography of Microscopic Organisms. Is Everything Small Everywhere? The Systematics Association Special Vol. 79. Cambridge University Press, Cambridge, pp. 244-283.
Bik, H.M., Porazinska, D.L., Creer, S., Caporaso, J.G., Knight, R. \& Thomas, W.K. (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology \& Evolution, 27, 233-243. http://dx.doi.org/10.1016/j.tree.2011.11.010
Brzeski, M.W., Choi, Y.E. \& Loof, P.A.A. (2002a) Compendium of the genus Criconemoides Taylor, 1936 (Nematoda: Criconematidae). Nematology, 4, 325-339. http://dx.doi.org/10.1163/156854102760199178
Brzeski, M.W., Choi, Y.E. \& Loof, P.A.A. (2002b) Compendium of the genus Mesocriconema Andrássy, 1965 (Nematoda: Criconematidae). Nematology, 4, 341-360. http://dx.doi.org/10.1163/156854102760199187
Callejón, R., Nadler, S., De Rojas, M., Zurita, A., Petrášová, J. \& Cutillas, C. (2013) Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of coxl mtDNA and 18S rDNA. Parasitology Research, 112, 3933-3949. http://dx.doi.org/10.1007/s00436-013-3584-z
Clary, D.O. \& Wolstenholme, D.R. (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22, 252-271. http://dx.doi.org/10.1007/bf02099755
Cobb, N.A. (1915) Nematodes and their relationships. Yearbook of the Department of Agriculture for 1914. Washington, D.C., 457-490.
Cordero, M.A., Robbins, R.T. \& Szalanski, A.L. (2012) Taxonomic and molecular identification of Mesocriconema and Criconemoides species (Nematoda: Criconematidae). Journal of Nematology, 44, 399-426.
Creer, S., Fonseca, V.G., Porazinska, D.L., Giblin-Davis, R.M., Sung, W., Power, D., Packer, M., Carvalho, G., Blaxter, M., Lambshead, J. \& Thomas, W.K. (2010) Ultra-deep 454 sequencing of the meiofaunal biosphere: practice, promises, and pitfalls. Molecular Ecology, 19 (1) (Supplement), 4-20. http://dx.doi.org/10.1111/j.1365-294x.2009.04473.x

Decraemer, W. \& Hunt, D. (2006) Structure and classification. In Perry, R.N. \& Moens, M. (Eds.), Plant Nematology. CABI, Wallingford, UK, pp. 3-32.
De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 565, 879-886.
DeSalle, R., Egan, M.G. \& Siddall, M. (2005) The unholy trinity: Taxonomy, species delimitation, and DNA barcoding. Philosophical Transactions of the Royal Society B, 360, 1905-1916. http://dx.doi.org/10.1098/rstb.2005.1722
Ebsary, B.A. (1982) Bakernema yukonense n.sp. (Nematoda: Criconematidae) with keys to the species of Criconemella and Discocriconemella. Canadian Journal of Zoology, 60, 3033-3047. http://dx.doi.org/10.1139/z82-386
Geraert, E. (2010) The Criconematidae of the world. Identification of the family Criconematidae (Nematoda). Academia Press, Gent, Belgium, 615 pp .
Gibbs, J. (2009) Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032, 1-38.
Graham, A. (1999) Late Cretaceous and Cenozoic history of North American vegetation: north of Mexico. Oxford University Press, New York, 370 pp.
Handoo, Z.A., Carta, L.K., Skantar, A.M. \& Chitwood, D.J. (2012) Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. Journal of Nematology, 44, 40-57.
Hoda, M. (2011) Phylum Nematoda Cobb 1932. Zootaxa, 3148, 63-95.
Hoffmann, J.K. (1974) Morphological variation in species of Bakernema, Criconema, and Criconemoides (Criconematidae: Nematoda). Iowa State Journal of Research, 49, 137-153.
Hollis, J.P. (1977) Loss in yield of rice caused by the ring nematode Criconemoides onoensis revealed by elimination of yellow nutsedge, Cyperus esculentus. Nematologica, 23, 71-78. http://dx.doi.org/10.1163/187529277x00246
Hunt, D.J., Luc, M. \& Manzanilla-Lopez, R.H. (2005) Identification, morphology, and biology of plant parasitic nematodes. In: Luc, M., Sikora, R.A. \& Bridge, J. (Eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CABI, Wallingford, UK, pp. 11-52.
Hunt, D.J. (2008) Book review of Wouts, 2006. Nematology, 10, 781.
Jenkins, W.R. (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter, 48, 692.

Kanzaki, N., Ragsdale, E.J., Herrmann, M., Mayer, W.E. \& Sommer, R.J. (2012) Description of three Pristionchus species (Nematoda: Diplogastridae) from Japan that form a cryptic species complex with the model organism P. pacificus. Zoological Science, 29, 403-417. http://dx.doi.org/10.2108/zsj. 29.403
Kiontke K.C., Félix, M., Ailion, M., Rockman, M.V., Braendle, C., Pénigault, J-B. \& Fitch D.H.A. (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evolutionary Biology, 11, 339. http://dx.doi.org/10.1186/1471-2148-11-339
Librado, P. \& Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187
Loof, P.A.A. (1965) Zur Taxonomie von Criconemoides rusticus (Micoletzky) und C. informis (Micoletzky). Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin), 41, 183-192. http://dx.doi.org/10.1002/mmnz. 4830410206
Loof, P.A.A. (1974) Macroposthonia curvata. C.I.H. Description of Plant-parasitic Nematodes. Set 4, No. 58.
Loof, P.A.A. \& De Grisse, A. (1973) Interrelationships of the genera of Criconematidae (Nematoda: Tylenchida). Mededelingen van de Fakulteit der Landbouwwetenschappen Gent, 38, 1303-1328.
Loof, P.A.A. \& De Grisse, A. (1989) Taxonomic and nomenclatorial observations on the genus Criconemella De Grisse \& Loof, 1965. Sensu Luc \& Raski, 1981. Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 54, 53-74.
Luc, M. (1970) Contribution à l'étude du genre Criconemoides Taylor, 1936 (Nematoda: Criconematidae). Cahiers ORSTOM, Série Biologie, 11, 69-131.
Masters, B.C., Fan, V. \& Ross, H.A. (2011) Species delimitation- a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources, 11, 154-157. http://dx.doi.org/10.1111/j.1755-0998.2010.02896.x
Mulawarman \& Geraert, E. (1997) The genera Basiria Siddiqi, 1959; Filenchus Andrássy, 1954 and Criconemella De Grisse \& Loof, 1965 (Nemata: Tylenchida) from South Sumatra, Indonesia. Biologisch Jaarboek Dodonaea, 64, 125-137.
Nadler, S. (2002) Species delimitation and nematode biodiversity: Phylogenies rule. Nematology, 4, 615-625. http://dx.doi.org/10.1163/15685410260438908
Nadler, S.A. \& Pérez-Ponce De León, G. (2012) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology-Cambridge, 138, 1688. http://dx.doi.org/10.1017/s003118201000168x

Norton, D.C., Donald, P., Kimpinski, J., Myers, R.F., Noel, G.R., Noffsinger, E.M., Robbins, R.T., Schmitt, D.P., Sosa-Moss, C. \& Vrain, T.C. (1984) Distribution of Plant-Parasitic Nematode Species in North America. Nematode Geographical Distribution Committee, Society of Nematologists, Lakeland, FL, 205 pp.
Norton, D.C. \& Ponchillia, P.E. (1968) Stylet-bearing nematodes associated with plants in Iowa prairies. Iowa Academy of Sciences, 75, 32-35.
Nyczepir, A.P., Bertrand, P.F., Miller, R.W. \& Motsinger, R.E. (1985) Incidence of Criconemella spp. and peach orchard histories in short-life and non-short-life sites in Georgia and South Carolina. Plant Disease, 698, 74-877. http://dx.doi.org/10.1094/pd-69-874
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. \& Kassem, K.R. (2004) Terrestrial ecoregions of the world: A new map of life on earth. BioScience, 51, 933-938.

Padial, J.M., Miralles, A., De la Riva, I. \& Vences, M. (2010) The integrative future of taxomony. Frontiers in Zoology, 7, 16. http://dx.doi.org/10.1186/1742-9994-7-16
Peneva, V., Neilson, R., Boag, B. \& Brown, D.J.F. (2000) Criconematidae (Nematoda) from oak forests in two nature reserves in Russia. Systematic Parasitology, 46, 191-201. http://dx.doi.org/10.1023/a:1006338019502
Powers, T.O., Harris, T., Higgins, R., Sutton, L. \& Powers, K.S. (2010) Morphological and molecular characterization of Discocriconemella inarata, an endemic nematode from North American native tallgrass prairies. Journal of Nematology, 42, 35-45.
Powers, T., Harris, T., Higgins, R., Mullin, P., Sutton, L. \& Powers, K. (2011) MOTUs, morphology and biodiversity estimation: A case study using nematodes of the suborder Criconematina and a conserved 18S DNA barcode. Journal of Nematology, 43, 35-48.
Raski, D. (1952) On the morphology of Criconemoides Taylor, 1936, with descriptions of six new species. Proceedings of the Helminthological Society, 19, 85-99.
Rodrigo, A., Bertels, F., Heled, J., Noder, R., Shearman, H. \& Tsai, P. (2008) The perils of plenty: what are we going to do with all these genes? Philosophical Transactions of the Royal Society, Series B, 363, 3893-3902. http://dx.doi.org/10.1098/rstb.2008.0173
Rosenberg, N.A. (2007) Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution, 61, 317-323. http://dx.doi.org/10.1111/j.1558-5646.2007.00023.x
Ross, H.A., Murugan, S. \& Li, W.L.S. (2008) Testing the reliability of genetic methods of species identification via simulation. Systematic Biology, 57, 216-230.
http://dx.doi.org/10.1080/10635150802032990
Schmitt, D.P. \& Norton, D.C. (1972) Relationships of plant parasitic nematodes to sites in native Iowa prairies. Journal of Nematology, 4, 200-206.
Siddiqi, M.R. (2000) Tylenchida: Parasites of plants and insects. $2^{\text {nd }}$ Edition. CABI Publishing, Wallingford, UK, 833 pp.
Srivathsan, A. \& Meier, R. (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics, 28, 190-194. http://dx.doi.org/10.1111/j.1096-0031.2011.00370.x
Thorne, G. (1961) Principles of Nematology. McGraw-Hill Book Company, New York, 553 pp.
Thorne, G. \& Malek, R.B. (1968) Nematodes of the Northern Great Plains Part 1 Tylenchida [Nemata: Secernentea]. Agricultural Experiment Station South Dakota State University, Brookings, South Dakota, 111 pp.
White, B. (1998) Quite a Year for Plums. Alfred A. Knopf, New York, 220 pp.
Wilson, E.O. (2007) TED Talk: My wish: Build the Encyclopedia of Life. Available from: http://www.ted.com/talks/ e_o_wilson_on_saving_life_on_earth.html (accessed 10 February 2014)
Wouts, W.M. (2006) Criconematina (Nematoda: Tylenchida). Fauna of New Zealand, 55, 1-228.
Zeng, Y., Ye, W., Tredway, L., Martin, S. \& Martin, M. (2012) Taxonomy and morphology of plant-parasitic nematodes associated with turfgrasses in North and South Carolina, USA. Zootaxa, 3452, 1-46.

[^0]: *O-Orphan (single individual belonging to no haplotype group); OG-Outgroup
 ** U - Undetermined

