Three new species in the subfamily Eriopeltinae Šulc from Italy (Hemiptera, Coccoidea, Coccidae) with comments on the genus Lecanopsis

GIUSEPPINA PELLIZZARI
University of Padova, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente DAFNAE, viale dell'Università 16, 35020 Legnaro, Italy. E-mail: giuseppina.pellizzari@unipd.it

Abstract

Three new coccid species, namely Hadzibejliaspis ferenci Pellizzari n. sp., Lecanopsis sicula Pellizzari n. sp. and L. salvatorei Pellizzari n. sp. are described and illustrated. Identification keys for the genera in the subfamily Eriopeltinae Šulc and to species in the genera Hadzibejliaspis Koteja and Lecanopsis Targioni Tozzetti are provided.

Key words: soft scales, Hadzibejliaspis, Lecanopsis, identification keys

Introduction

The family Coccidae includes about 1140 species and is the third largest family in the Superfamily Coccoidea, although it is likely that there are more than twice as many species as currently recognized. Members of the family are present in all zoogeographical regions, but the richest in terms of number of genera and species are the Palaearctic and the Neotropical Regions (Kozár \& Ben-Dov, 1997). Ten subfamilies are recognized in the Coccidae, based on the morphology of the adult female and, when known, that of the adult males (Hodgson, 1997). At present, the subfamily Eriopeltinae (as defined by Hodgson, 1994: 55) contains 13 genera (Eriopeltis Signoret, Exaeretopus Newstead, Hadzibejliaspis Koteja, Idiosaissetia Brain, Lecanopsis Targioni Tozzetti, Luzulaspis Cockerell, Membranaria Brain, Poaspis Koteja, Psilococcus Borchsenius, Scythia Kiritshenko, Symonicoccus Koteja \& Brookes, Vittacoccus Borchsenius and Waricoccus Brookes \& Koteja). Of these, species belonging to Idiosaissetia and Membranaria are African or Asiatic, the genera Symonicoccus and Waricoccus are known only in Australia, whereas the other genera have a Palaearctic distribution. Eriopeltis, Scythia, Psilococcus and Vittacoccus are clearly recognizable genera, whereas Exaeretopus, Hadzibejliaspis, Lecanopsis, Luzulaspis and Poaspis share a number of morphological characters that can make it difficult to place a species confidently in some of these genera. With regard to the host plants, Eriopeltis, Scythia, Exaeretopus, Hadzibejliaspis, Lecanopsis and, Poaspis are known mostly off Poaceae whereas Luzulaspis, Psilococcus and Vittacoccus live on Cyperaceae.

A synopsis of the attempts by different authors to form natural groups or tribes among the Eriopeltinae species is reported below.

Šulc (1941) introduced the genus Mohelnia (= Scythia) and created the Tribe Eriopeltini Šulc to take Eriopeltis, Mohelnia (= Scythia) and Scythia. In fact, even though the adult females do have a different morphology, Eriopeltis and Scythia have similar first-instar nymphs with spines on the margin of the head (Šulc, 1941; Řeháček, 1960). Later, Borchsenius (1957) placed the following genera in the subfamily Filippiinae: Eriopeltis, Exaeretopus, Lecanopsis, Luzulaspis, Psilococcus, Scythia, Vittacoccus plus Chlamydolecanium Goux, Filippia Targioni Tozzetti, Metaceronema Takahashi, Parafairmaria Cockerell and Stotzia Marchal. Danzig (1986) accepted this point of view. However, Giliomee (1967), on the basis of male characters, recognized the Eriopeltis group, with Eriopeltis and Luzulaspis, but considered that Filippia had no connection with these genera. Koteja (1969, 1970) also compared male morphology and demonstrated an affinity between Eriopeltis, Scythia, Luzulaspis, Psilococcus and Vittacoccus. The same author (Koteja, 1978) discussed and diagnosed the genera in the tribe Eriopeltini, established the new genera Hadzibejliaspis and Poaspis and regarded Eriopeltis, Exaeretopus,

Hadzibejliaspis, Lecanopsis, Luzulaspis, Poaspis, Psilococcus, Scythia and Vittacoccus as a natural group. Koteja had doubts only about Lecanopsis, mainly because of its different biology: Lecanopsis species overwinter as thirdinstar females, whilst the other genera overwinter in the egg stage. Koteja (1978) also provided a key to the above genera in which the ratio of the length-width of the hind tibia proved to be a good character to separate Lecanopsis from the other genera. Kosztarab and Kozár (1988) also recognized the same genera as members of the Eriopeltinae.

Tang et al. (1990) and Tang (1991) introduced the tribe Lecanopsini for Lecanopsis and Psilococcus, characterized by the presence of a large peritreme cavity with inner spiracular disc pores. Later, Hodgson (1994), based mainly on female morphology, clustered similar genera in distinct groups in the subfamily Eriopeltinae: the Exaeretopus-group with Exaeretopus, Luzulaspis, Poaspis and Vittacoccus; the Paralecanopsis (= Lecanopsis)group, with Lecanopsis and Psilococcus and the Scythia and Idiosaissetia group. Eriopeltis and Hadzibejliaspis were rather distinctive genera and were not placed in any of the above groups.

In spite of these efforts, the relationships of the Eriopeltinae and related genera is still unclear and the morphological differences between some genera (i.e.between Hadzibejliaspis and Lecanopsis, and between Exaeretopus, Luzulaspis and Poaspis) remain uncertain. The morphology of the first-instar nymphs could help in generic identification but unfortunately they are known only in a few genera.

In this paper three new species are described, one in Hadzibejliaspis and two in Lecanopsis. With the aim to better understand their possible relationships, species belonging to Exaeretopus, Luzulaspis and Poaspis have been studied also and their morphology compared with Hadzibejliaspis and Lecanopsis species.

Materials and methods

Specimens were mounted according to the procedures of Howell \& Kosztarab (1972) and Ben-Dov \& Hodgson (1997). Measurements and frequencies are given as a mean, followed by the ranges in parentheses. Terminology follows that of Hodgson (1994).

Specimen depository: The Scientific Museums of the University of Padova (Italy), Department of Agronomy, Food, Natural Resources, Animals and Environment - Entomology. Abbreviation of the depository: DAFNAE.

Genus Hadzibejliasipis Koteja

The genus Hadzibejliaspis was established by Koteja (1978) to include the species Exaeretopus stipae Hadzibejli, 1960. According to Koteja (l.c.), the genus is characterised by the presence of very large tubular ducts, each 40-45 $\mu \mathrm{m}$ long and $9-10 \mu \mathrm{~m}$ wide, with longitudinal ridges on their inner surface. Moreover, there is one pair of pregenital setae present medially on each of the posterior 5 or 6 abdominal sternites plus $0-2$ spiracular disc pores near each spiracular opening and $4-8$ in each peritreme cavity. According to Koteja (l.c.), the genus Hadzibejliaspis shares some morphological characteristics with the genus Exaeretopus (body shape, and some characters of legs and antennae), with Luzulaspis (presence of long median setae on 6 posterior abdominal sternites) and with Lecanopsis (presence of large tubular ducts).

Hodgson (1994) redescribed the genus based on 2 rather poor paratypes, and added some details and remarks, i.e. the peculiar tubular ducts on his specimens were $35-40 \mu \mathrm{~m}$ long, with $2 / 3$ of each duct slightly sclerotised; he was unable to determine the number of pairs of pregenital setae due to the bad condition of the specimens. The same paratypes have been studied in the present work and the data reported by Hodgson are confirmed.

Information on the biology of H. stipae is very scarce. According to Hadzibejli (1960, 1973), egg laying occurs in early June among the leaves of Stipa caucasica, but the females can drop to the ground easily, as they are not fixed on the host plant; the female secretes a loose ovisac of thick, waxy, brilliant threads that do not entirely cover the body; and each female can lay up to 160 pinky-yellowish eggs. H. stipae has been collected so far only in Georgia, near Tbilisi, off Stipa caucasica and S. pulcherrima (Hadzibejli, 1960, 1973).

Hadzibejliaspis was monotypic until now. However, a revision of the material close to Lecanopsis present in the DAFNAE collection, highlighted the presence of a new species, whose morphological characters are here ascribed to Hadzibejliaspis.

Hadzibejliaspis ferenci Pellizzari sp. n.

(Fig. 1)
Type material. Holotype: adult female, Italy, Abruzzo region, Parco Nazionale, Villetta Barrea, Val Fondillo (AQ), 1100m asl, 7.v.1989, leg. S. Marotta, slide C. Paratypes: 5 adult females, same data as holotype, slides n. A,B,D,E,F; 1 adult female, Parco Nazionale, pass between Villetta Barrea and Scanno, 1100m asl, leg. A.Tranfaglia, slide n. 24 (no collecting date); 1 adult female, Parco Nazionale, Passo Godi, 24.v.2000, leg. Fontana \& Malagnini, slide n. 984; 1 adult female and 2 first instars, Calabria region, Pollino, Piani di Ruggio, 1550m a.s.l, 26.vi.1998, leg. Fontana, slides n. 855/1-3; 1 adult female and 2 first instars, La Sila, M. Sorbella, 1730m asl, 23.vi.1999, leg. Fontana \& Malagnini, slides n. 905/1-3; 5 adult females, Molise region, Valle Fiorita (IS), 23.v.2000, 1400m asl, leg. Fontana \& Malagnini, slides 978/1-7.

Adult female

Living specimens: oval, pink-yellowish, partly enclosed in a white, waxy, sub-spherical egg-sac.
Mounted specimens: body oval, $3.3 \mathrm{~mm}(2.8-4)$ long, $2.2 \mathrm{~mm}(1.8-2.8)$ wide.
Venter: derm membranous, dermal spinules present medially on thoracic and abdominal segments. Antennae 8 segmented; in some specimens one antenna 8 -segmented, other 7 -segmented; length of segments in $\mu \mathrm{m}$: I 40 (42-40); II 30,5 (32-30); III 46 (50-40); IV 36 (30-42); V 30 (24-36); VI 23 (20-28); VII 22 (20-26) and VIII 32. Scape and segment II each with 2 setae, III and IV without setae, V with 2 or 3 flagellate setae, VI with 1 fleshy seta, VII with 1 fleshy setae +1 hair-like seta, and VIII with 3 fleshy setae +5 or 6 hair-like setae. Legs well developed, narrow (Table 1: c). Tibio-tarsal sclerosis present. Measurements of hind leg: coxa 98 (90-100) $\mu \mathrm{m}$ long; trochanter + femur $198(190-200) \mu \mathrm{m}$; tibia $162(150-170) \mu \mathrm{m}$ long and $29 \mu \mathrm{~m}$ wide (length to width ratio 5.5:1); tarsus bent, with a clear indentation on its dorsal margin, $99(90-110) \mu \mathrm{m}$ long; claw without a denticle; claw digitules longer than claw, slightly broadened apically, tarsal digitules longer than claw, thin and with a small apical swelling. Spiracles with peritreme $38(34-48) \mu \mathrm{m}$ wide; peritreme cavity $45(40-50) \mu \mathrm{m}$ wide, each cavity with $8-16$ multilocular disc pores, each with 7 or 8 loculi (Table 1: a). Spiracular disc pores, each 6 or $7 \mu \mathrm{~m}$ wide with 5-9 loculi (usually 7 or 8), forming a loose group anterolateral to each spiracle, with 20 (10-27) pores near each anterior spiracle and $10(5-19)$ pores near each posterior spiracle. Simple pores scattered. Pregenital disc pores mostly with 7 or 8 loculi, each $7.5-8.5 \mu \mathrm{~m}$ wide, numerous around genital opening, becoming progressively less numerous across preceding abdominal segments. Tubular ducts of two sizes: large tubular ducts 32 (24-35) $\mu \mathrm{m}$ long, $8 \mu \mathrm{~m}(6-9)$ wide, with a thin inner ductule $19 \mu \mathrm{~m}$ long and small terminal gland; small ducts $24 \mu \mathrm{~m}$ (16-28) long, $4 \mu \mathrm{~m}(3-5)$ wide, inner ductule not seen; larger tubular ducts more frequent than small ones, numerous on venter and thorax, less frequent on head; many large tubular ducts with characteristic elongate ridges along at least part of their inner surface. Body setae very small, about $7-8 \mu \mathrm{~m}$ long, scattered; with one pair of interantennal setae, $50-60 \mu \mathrm{~m}$ long; with one pair of pregenital setae present medially on last 4 or 5 abdominal sternites, each $50-64 \mu \mathrm{~m}$ long. Other body setae very small, about $8-10 \mu \mathrm{~m}$ long, scattered.

Dorsum: derm membranous, with segmentation apparent on thorax and abdomen. Eyespots present near margin, small, $28 \mu \mathrm{~m}$ wide. Preopercular pores without a dark rim, small, mostly 5 (4-6) $\mu \mathrm{m}$ wide, forming a sparse, irregular band $4-5$ pores wide (maximum) from anal plates to metathoracic segment. Tubular ducts same shape and size as on venter, larger ducts scarce on head, most numerous on thorax and abdomen; smaller ducts, sparse, most frequent on anal lobes. Body setae short, about $6 \mu \mathrm{~m}$ long, sparse. Marginal setae bent, each about 9 $\mu \mathrm{m}$ long on thorax and abdomen, but those on anal lobes and head apex up to $16-20 \mu \mathrm{~m}$. Anal ring with 6 setae, each about $100 \mu \mathrm{~m}$ long. Anal plates subtriangular, with three apical or subapical setae.

First instar (crawler) (Fig. 2)
Living specimens: body yellowish, elongate oval and flattened. Legs and antennae well developed.
Mounted specimens: body oval 460 (405-525) $\mu \mathrm{m}$ long and 210 (200-225) $\mu \mathrm{m}$ wide. Eyes situated dorsomarginally.

Venter: antennae 6 segmented, $96(93-104) \mu \mathrm{m}$ long, third segment slightly longer than others. With 1 pair of interantennal setae and 1 trilocular pore near scape of each antenna. Legs subequal, well developed. Tarsal digitules clearly longer than claw digitules. Loop of mouth stylets $225 \mu \mathrm{~m}$ long, reaching abdominal segment IV. Spiracles small, each with two spiracular disc pores in peritreme cavity; spiracular disc pores with 5-9 loculi, forming a group of 5-7 pores between each anterior spiracle and body margin and a group of 3-8 pores between each posterior spiracle and body margin. Minute hair-like setae distributed in a submarginal row around body and in two medial and submedial longitudinal rows on abdomen.

FIGURE 1. Hadzibejliaspis ferenci n. sp., adult female.

FIGURE 2. Hadzibejliaspis ferenci \mathbf{n}. sp., first instar nymph.

Margin: anal lobes well developed, each with an apical seta $200 \mu \mathrm{~m}$ long. Marginal setae minaret-like, with 5 on either margin of head (3 or 4 anterior to each eye-spot and 1 posterior to each eyespot), plus 3 on margin of thorax and 8 or 9 on either margin of abdomen. Minaret-like setae on head and thorax smaller than those on abdomen.

Dorsum: with 1 pair of short dorsal setae medially on each thoracic segment. Small simple pores present, forming a submarginal and a submedial longitudinal row on thorax and abdomen and with 1 or 2 pores also on head. Anal ring round, with pores and 6 short setae. Normal anal plates absent.

Etymology. The species is named in honour of Dr. Ferenc Kozár (Hungarian Academy of Sciences, Plant Protection Institute, Budapest, Hungary), eminent coccidologist and generous friend.

Host plant. Specimens on slides n. 855, 905, 978, 984 collected near roots of unknown plants under stones; slides A-F collected near roots of unknown plants, and slide $n .24$ off roots of "Gramineae (= Poaceae) or Fabaceae".

Distribution. Italy (Abruzzo, Molise, Calabria regions). All specimens were collected at 1000 to 1500 m asl.
Comments. The adult females of H. ferenci differ from those of H. stipae in having (characters of H. stipae in brackets): (i) $8-16$ spiracular disc pores within each peritreme cavity (3 or 4); (ii) spiracular disc pores also forming a group of about 20 pores near each anterior spiracular opening (1 or 2), and (iii) each tubular duct slightly sclerotised along about $1 / 3$ of length (2/3). The first-instar of H. ferenci is of the Lecanopsis type, with minaret-like setae on body margin.
H. ferenci is assigned to the genus Hadzibejliaspis because of the presence of: (i) 5 pairs of pregenital setae, (ii) hind tibia with length/width ratio greater than $5: 1$, (iii) large tubular ducts, in part with ridges, and (iv) spiracles opening into a small peritreme cavity with few inner disc pores.

Genus Lecanopsis Targioni Tozzetti

The history and the distinctive morphological characters of the adult female and female nymphs of this genus are given in Fontana \& Pellizzari (2001) and Pellizzari \& Fontana (2001a; 2002).

Lecanopsis sicula Pellizzari n. sp.

(Fig. 3)
Type material. Holotype: adult female, Italy, Sicily, Carlentini (Borgorizzo), 29.v.1998, leg. P. Fontana, slide n. 852/1. Paratypes: 5 adult females, 3 first instars, same data as holotype, slides n. 852/2-17.

Adult female

Living specimens: oval, slightly convex, pale yellow.
Mounted specimens: body oval, 4 (3.6-4.3) mm long, 2.3 (2-2.5) mm wide.
Venter: derm membranous, dermal spinules present medially on thoracic and abdominal segments. Antennae usually 8 segmented (one specimen with 7 -segmented antennae, two specimens with one antenna 8 segmented, other 7 segmented); length of segments in $\mu \mathrm{m}$: I 46 (40-50); II 47 (40-50); III 54 (46-60); IV 40 (28-54); V 28 (26-30); VI 21 (18-24); VII 18 (16-24), and VIII 33 (30-36). Scape and segment II each with 2 setae, III and IV without setae, V with 2 hair-like setae, VI with 1 fleshy seta, VII with 1 fleshy setae +1 hair-like seta, and VIII with 3 fleshy setae +4 or 5 hair-like setae. Legs well developed, stout (Table 1: D). Tibio-tarsal sclerosis present. Measurements of hind leg: coxa 138 (120-150) $\mu \mathrm{m}$ long; trochanter + femur 246 (220-270) $\mu \mathrm{m}$; tibia 200 (190-210) $\mu \mathrm{m}$ long and $40 \mu \mathrm{~m}$ wide ((length to width ratio $5: 1$); tarsus $102(90-110) \mu \mathrm{m}$, bent, with a clear indentation on its dorsal margin; claw $14-16 \mu \mathrm{~m}$, without a denticle; claw digitules longer than claw, broad; tarsal digitules longer than claw, thin and with a small apical swelling.

Spiracles with peritreme $51(48-56) \mu \mathrm{m}$ wide; peritreme cavity large, round, 70 (66-76) $\mu \mathrm{m}$ wide, each peritreme cavity with 30-60 multilocular disc pores, each with 7 or 8 loculi (Table 1: B). Spiracular disc pores, each 6-8 $\mu \mathrm{m}$ wide with 7 or 8 loculi, with 1-5 near each anterior spiracle, and 0 or 1 near each posterior spiracle. Simple pores numerous, scattered. Pregenital disc pores each 7-9 $\mu \mathrm{m}$ wide with 7-9 loculi, present around genital opening and across abdominal segments, less numerous near submargin and on anterior abdominal segments.

FIGURE 3. Lecanopsis sicula n. sp., adult female.

FIGURE 4. Lecanopsis sicula n. sp., first instar nymph.

Tubular ducts of three sizes, all with elongate ridges along half or $1 / 3^{\text {rd }}$ of outer and $1 / 3^{\text {rd }}$ of inner end (Fig. 4): large ducts each $36(32-40) \mu \mathrm{m}$ long, $8(6-9)$ wide, mostly with a narrow inner ductule; small tubular ducts each 27-32 $\mu \mathrm{m}$ long, about $5 \mu \mathrm{~m}$ wide, inner ductule not seen; large ducts more frequent than small ducts and most numerous on abdomen and thorax, rare on head. Also with a thin type of tubular duct, each $28-30 \mu \mathrm{~m}$ long and $3.2 \mu \mathrm{~m}$ wide, few, present on either side of anal cleft only. Body setae very small, about $6-8 \mu \mathrm{~m}$ long, sparse; with one pair of interantennal setae, $60-70 \mu \mathrm{~m}$ long; and with a pair of pregenital setae medially on posterior 4 or 5 abdominal sternites, most posterior pair of setae each $50-80 \mu \mathrm{~m}$ long, other pairs usually shorter, about 20-30 long.

Dorsum: derm membranous, with segmentation apparent on thorax and abdomen. Eyespots present near margin. Preopercular pores 5-8 $\mu \mathrm{m}$ wide, possibly convex, with a dark rim and a granulate surface, forming a sparse longitudinal band $10-12$ pores wide from anal plates to prothorax, but wider on metathorax and anterior abdominal segments. Simple dark-rimmed pores numerous, scattered. Tubular ducts as on venter, rare on head, numerous on thorax and abdomen, more frequent on anal lobes. Body setae very short, about $6 \mu \mathrm{~m}$ long, sparse. Marginal setae all bent, each about $8-12 \mu \mathrm{~m}$ long on thorax and abdomen but those on head apex 16-30 $\mu \mathrm{m}$ long; anal lobe setae $10-20 \mu \mathrm{~m}$ long. Anal ring with 8 setae, each about $150-160 \mu \mathrm{~m}$ long. Anal plates subtriangular, with three apical or subapical setae.

First instar (crawler) (Fig. 4)
Living specimens: orange, elongate and flattened. Legs and antennae well developed.
Mounted specimens: body elliptic, elongate, 525 (500-560) $\mu \mathrm{m}$ long and $200(190-215)$ wide. Eyes situated dorso-marginally.

Venter: antennae 6 -segmented, $116(100-125) \mu \mathrm{m}$ long. With one pair of interantennal setae. With one trilocular pore near each scape. Legs subequal, well developed; measurements of hind leg: coxa $20 \mu \mathrm{~m}$ long; trochanter + femur $60 \mu \mathrm{~m}$; tibia $40 \mu \mathrm{~m}$; tarsus $30 \mu \mathrm{~m}$. Tarsal digitules longer than claw digitules. Stylet loop 300 $\mu \mathrm{m}$ long, reaching abdominal segment VI. Spiracles small, each with 2 disc pores in peritreme cavity. Spiracular disc pores each with 5-9 loculi, forming a group of $2-5$ pores between anterior spiracle and body margin, and a group of 2-4 between posterior spiracle and body margin. Minute setae forming a submarginal row around body and present in two medial and submedial longitudinal rows on each side of abdomen, with most posterior pair of medial setae longer than others.

Margin: anal lobes well developed, each with an apical seta $150-160 \mu \mathrm{~m}$ long. Marginal setae minaret-like, present on body margin with 16 setae on each side: 5 on head, 3 on thorax and 8 on abdomen; setae on head and thorax smaller than those on abdomen.

Dorsum: With a pair of minute setae medially on each thoracic segment. Small simple pores present in a submarginal and a submedial longitudinal row on thorax and abdomen, with 1 or 2 pores also on head. Anal ring with 6 setae. Anal plates absent.

Etymology. The feminine Latin adjective sicula meaning "pertaining to Sicily" where this new species was collected.

Host plant. Collected on the crown of Lolium sp. (Poaceae).
Distribution. Sicily (Italy)
Comments. The adult female of L. sicula has: (i) large peritreme cavities with 30+ disc pores in each cavity (as in Lecanopsis); (ii) hind tibia up to 5 times longer than wide; (iii) large tubular ducts with ridges along their inner surface, and (iv) one pair of pregenital setae medially on each of the last five abdominal segments (as in Hadzibejliaspis). In addition, the first-instar nymphs are Lecanopsis type, with marginal minaret-like setae. The first-instar nymph of L. sicula is morphologically close to that of L. mirabilis (Pellizzari and Fontana, 2002) but has fewer (2-4) spiracular disc pores near each spiracular opening (4-8 near each anterior spiracle and 2-8 near each posterior spiracle on L. mirabilis).

Lecanopsis salvatorei Pellizzari n. sp.

(Fig. 5)
Type material. Holotype: adult female, Italy, Basilicata region, Laurenzana (Potenza), 1300m asl, 26.x.1993, leg. S. Marotta, slide n. 1700/1. Paratypes: 5 adult females, same data as holotype, slides n. 1700/2-7.

FIGURE 5. Lecanopsis salvatorei n. sp., adult female.

Adult female

Unmounted female: not seen.
Mounted specimens: elongate oval, $3 \mathrm{~mm}(2.2-3.6)$ long, $1.5 \mathrm{~mm}(1-1.7)$ wide.
Venter: derm membranous, with signs of segmentation on thorax and abdomen; dermal spinules present medially on all thoracic and abdominal segments. Antennae 8 segmented; length of segments in $\mu \mathrm{m}$: I 50 (44-60); II $30 \mu(28-34)$; III 63 (54-70); IV 36 (28-46); V 33 (30-36); VI 27 (26-30); VII 26 (22-30) and VIII 36 (30-40). Scape and segment II each with 2 setae, III without setae, IV without setae or with 1 hair-like seta, V with 2 hairlike setae, VI with 1 fleshy seta, VII with 1 fleshy setae +1 hair-like seta, and VIII with 3 fleshy setae +4 or 5 hairlike setae. Legs well developed, stout. Tibio-tarsal sclerosis present. Measurements of hind leg: coxa 116 (100-125) $\mu \mathrm{m}$ long; trochanter + femur 225 (200-250); tibia 198 (175-215) long, 47 wide (length to width ratio 4.2:1); tarsus 89 ($80-100$) $\mu \mathrm{m}$; claw digitules broad, longer than claw; tarsal digitules thin, longer than claw, capitate, each about $40 \mu \mathrm{~m}$ long. Spiracles with peritreme $40-42 \mu \mathrm{~m}$ wide; peritreme cavity round, large, 75 (70-80) $\mu \mathrm{m}$ wide, each peritreme cavity with $30-35$ spiracular disc pores. Spiracular disc pores, each $5-6 \mu \mathrm{~m}$ wide with 3-8 loculi (mostly 8): with 39 (32-51) pores either forming a loose group or a sparse band reaching body margin near each anterior spiracle; spiracular disc pores usually absent near posterior spiracle (3 specimens each with one pore). Simple pores scattered but absent medially. Pregenital disc pores each 6-8 $\mu \mathrm{m}$ wide with 5-7 loculi (mostly with 7), distributed mostly around genital opening, scarce on posterior IV-VII pregenital segments. Very small simple pores, each $1.6 \mu \mathrm{~m}$ wide, scattered, especially numerous medially and submedially on thoracic segments. Ventral tubular ducts of two sizes: small ducts each $16-20 \mu \mathrm{~m}$ long, $5 \mu \mathrm{~m}$ wide; large ducts each 25 (22-29) long, $8 \mu \mathrm{~m}$ wide, both ducts frequent on abdomen, less frequent on thorax, rare on head. Small simple pores sparse. Body setae very small, spinose, each about $5-8 \mu \mathrm{~m}$ long; with two pairs of interantennal setae, longer pair each 35 (30-40) $\mu \mathrm{m}$ long, shorter pair 12-16 $\mu \mathrm{m}$ long; also with 3 or 4 very small setae, about $6 \mu \mathrm{~m}$ long on frons. With an irregular submarginal row of small bent setae, each $16-20 \mu \mathrm{~m}$ long, distributed around body submargin. With a pair of pregenital setae present medially on posterior 4 or 5 abdominal segments, most posterior setae 54 (48-60) $\mu \mathrm{m}$ long, other pairs clearly smaller, variable in length, each $14-30 \mu \mathrm{~m}$. Stylet loop reaching mesocoxae.

Dorsum: derm membranous. Preopercular pores each 6-10 $\mu \mathrm{m}$ wide, distributed in a longitudinal band, with maximum width 6-8 pores, narrower than space between coxae, extending from anal plates to mesothorax inclusive. Marginal setae of various sizes, bent: setae on head each 33 (30-40) $\mu \mathrm{m}$ long; setae on thorax and abdomen smaller, each 17 (13-20) $\mu \mathrm{m}$ long and those on anal lobes each 24 (20-32) $\mu \mathrm{m}$ long. Dorsal setae sparse, mostly $10-12 \mu \mathrm{~m}$ long but up to $16 \mu \mathrm{~m}$. Dorsal tubular ducts sparse on abdomen, rare on thorax and head. Darkrimmed simple pores, each about $5 \mu \mathrm{~m}$ wide, numerous throughout dorsum. Anal ring round, with 8 setae, each $110-130 \mu \mathrm{~m}$ long; anal plates together quadrate, with rounded outer angles, each plate $150 \mu \mathrm{~m}$ long and $75 \mu \mathrm{~m}$ wide.

Etymology. This species is dedicated to the memory of the well-known coccidologist Salvatore Marotta, who collected and mounted this new species.

Host plant. Off roots of Festuca (Poaceae). According to the label data, the adult females of this species were collected in late October at 1300 m asl, suggesting that this should be the overwintering stage.

Distribution. Southern Italy (Basilicata Region).
Comments. Adult female L. salvatorei have numerous ventral tubular ducts and large peritreme cavities, each with 30+ disc pores, as in the genus Lecanopsis. But, L. salvatorei has a pair of pregenital setae medially on the posterior 4 or 5 abdominal segments (as in Hadzibejliaspis). No first instar nymphs are available.

Key to Palaearctic Genera of the Subfamily Eriopeltinae based on adult females

1. With a ventral or dorsal submarginal band of 5-locular pores 2
Without a ventral or dorsal submarginal band of 5-locular pores 3
With a dorsal marginal band of 5-locular pores; preopercular pores distributed in a longitudinal band from anal plate to thorax.Vittacoccus
With a ventral marginal band of 5-locular pores; preopercular pores forming a group on posterior abdominal tergites .
Psilococcus
2. Legs markedly reduced in size or with only 2 or 3 short segments . 4

- Legs normal, stout or slender, with 5 segments 5

4. Dorsal setae cone-shaped, truncate; antennae 6-8 segmented; legs reduced in size but otherwise normal Eriopeltis

- Without dorsal cone-shaped setae; antennae $1-4$ segmented; legs reduced to $1-3$ short segments Scythia

5. Legs and antennae stout; hind tibia broad, less than 5 times longer than wide; each spiracle opening into a large, round peritreme cavity, each cavity with numerous spiracular disc pores . Lecanopsis Legs and antennae slender; hind tibia narrow, more than 5 times longer than wide; each spiracle opening into a small peritreme cavity, each cavity with few spiracular disc pores

6
6. Tubular ducts large (usually $32-40 \mu \mathrm{~m}$ long and $8 \mu \mathrm{~m}$ wide), with elongate inner ridges; stigmatic spines absent

Hadzibejliaspis
Tubular ducts usually less than $25 \mu \mathrm{~m}$ long and $6 \mu \mathrm{~m}$ wide; stigmatic spines usually present, at least in anterior stigmatic areas
7. Body oval; usually with 2, exceptionally (E. formiceticola) 4-8, long interantennal setae (each longer than $50 \mu \mathrm{~m}$); marginal setae short, sparse; usually with one stigmatic spine in each anterior stigmatic area. Exaeretopus Body elongate oval, or elongate with parallel sides; usually with $10-70$ long interantennal setae (each longer than $50 \mu \mathrm{~m}$); marginal setae forming an irregular double row; stigmatic setae present in both anterior and posterior stigmatic areas 8
8. With 35-70 interantennal setae in total; on Poaceae. .Poaspis

- With 10-25 interantennal setae in total; mostly on Cyperaceae and Juncaceae . Luzulaspis

Key to adult female Hadzibejliaspis

1. With 1 or 2 spiracular disc pores near each anterior spiracle; with 3 or 4 spiracular disc pores within each peritreme cavity . . . H. stipae (Hadzibejli). With a group of 18-24 spiracular disc pores near each anterior spiracle; usually with $8-16$ spiracular disc pores within each peritreme cavity.
H. ferenci sp. n.

Key to adult female Lecanopsis

The key omits L. iridis, whose adult female is unknown. Descriptions and redescriptions of L. aphenogastrorum, L. shutovae, L. taurica and L. myrmecophila are based on the only one or two adult females of the type series, often in bad condition, so that their intraspecific variability is not known. The above reported species have not been recorded since their description (see Pellizzari \& Fontana, 2002, for details).
1 Marginal setae long, stout L. taurica BorchseniusMarginal setae short, thin2
2 Groups of multilocular dark-rimmed pores present on dorsum3
3 Preopercular pores distributed in a longitudinal median band, equal to or wider than the space between coxae 4
Preopercular pores distributed in a longitudinal median band clearly narrower than the space between coxae 6
4 Antennae 7 or 8 segmented; longitudinal band of preopercular pores as wide as space between coxae; spiracular disc poresabsent or rare near anterior spiracles..L. subterranea (Gomez-Menor Ortega)
Antennae 6 or 7 segmented; longitudinal band of preopercular pores wider than space between coxae; with numerous spiracu-lar disc pores near anterior spiracles5
Antennae usually 7 segmented; spiracular disc pores near anterior spiracles much more numerous (20-204, average 86) thannear posterior spiracles ($0-51$, average 11).L. clodiensis (Pellizzari)
Antennae 6 segmented; with about 14-30 pores spiracular disc pores near both anterior and posterior spiracles.L. turcica (Bodenheimer)
6 Preopercular pores present on head 7

- Preopercular pores absent from head 11
$7 \quad$ Preopercular pores sparse, forming a very narrow longitudinal band (maximum width 2-4 pores) extending from head to analregion; pregenital disc pores present only near genital opening and on anal lobes. L. myrmecophila LeonardiPreopercular pores usually numerous and forming a longitudinal band greater that 4 pores wide; pregenital disc pores presentnear genital opening, on anal lobes and across abdominal segments88 Spiracular disc pores forming an elongate, irregular band extending from each spiracle to body margin and with a few pores
extending along body margin L. shutovae Borchsenius
Spiracular disc pores forming a band extending from each spiracle to body margin but without pores along body margin ... 9
Spiracular disc pores usually absent near posterior spiracles (rarely $1-3$); antennae usually 8 segmented (rarely 7 segmented).Spiracular disc pores present near posterior spiracles; antennae 6 or 7 segmented10 Antennae 7 segmented; preopercular pores each about 5-7 $\mu \mathrm{m}$ wide, in a sparse longitudinal band $7-8$ pores wide. \qquad
Spiracular disc pores present near each anterior and posterior spiracle; with a pair of pregenital setae present medially on pos-terior-most abdominal segment only
L. formicarum Newstead Spiracular disc pores usually absent near posterior spiracle (maximum 1 pore); with a pair of pregenital setae present medially on posterior 4 or 5 abdominal segments .

12
Spiracular disc pores in a band of 15-40 pores associated with each anterior spiracle L. salvatorei sp. n. Spiracular disc pores few, only 2 or 3 near each anterior spiracle . . L. sicula sp. n.

Discussion

The absence of large, round peritreme cavities, each with numerous disc pores, seems a good character to separate Hadzibejliaspis (Table 1: A) from Lecanopsis (Table 1: B). The ratio of the length/width of the hind tibia, introduced by Koteja (1978) to separate these genera, is also a good character, but the length/width ratio of the hind tibia is here slightly modified: length/width ratio more than $5: 1=$ Hadzibejliaspis (instead of "at least 6" as proposed by Koteja) (Table 1: C); length/width ratio up to 5:1 = Lecanopsis (Table 1: D). In addition, Lecanopsis usually only has long pregenital setae on the posterior-most pregenital segment, whereas Hadzibejliaspis has pairs of almost equally long setae on the posterior-most 4 or 5 abdominal segments. Both L. sicula and L. salvatorei have pairs of pregenital setae on the posterior-most 4 or 5 abdominal segments (as in Hadzibejliaspis) but the most posterior pair of setae is distinctly longer $(50-80 \mu \mathrm{~m})$ than the other pairs $(14-30 \mu \mathrm{~m})$. This characters is shared with L. mirabilis and L. pellizzariae (Fontana \& Malagnini, 2001), which have short pregenital setae apart from the most posterior pair.

In addition, both L. mirabilis and L. pellizzariae exhibit peculiar morphological and biological characters. The most striking character of L. mirabilis adult female is the presence of multilocular dark-rimmed pores, either singly or forming groups of 2-4 pores on the dorsum (Table 1: E). This character is very rare in the Coccidae and absent in the other Lecanopsis species known so far.
L. pellizzariae is characterised by the third-instar female nymphs having well-developed legs and by the unusual increase in body size of the adult female due to its feeding activity (Fontana \& Malagnini, 2001), whereas in the other Lecanopsis species, the third-instar female nymphs have reduced legs, the adult females do not feed and the increase in body size occurs in the third instar (Boratynski et al., 1982; Pellizzari \& Fontana, 2001a).

The presence of large tubular ducts with elongate ridges on their inner surface was considered a diagnostic character of Hadzibejliaspis (Koteja, 1978). Nevertheless, some Lecanopsis species do have this morphological character. Boratynski et al. (1982: 526) clearly illustrated the tubular ducts of adult female L. formicarum as ridged. Among the tens of Lecanopsis preserved in the DAFNAE collection, several adult female L. subterranea, L. clodiensis and L. formicarum have tubular ducts partially sclerotised and with elongate inner ridges. The recognition of ridges associated with the ducts appears to largely depend on the age of the specimens, on the staining procedure and on the age of the slides. In the same species, the ridges may be clearly visible on some specimens, at least along part of the length of the tubular ducts, whereas in other specimens they are not visible at all. The degree of sclerotisation can also vary, some specimens having completely unsclerotised ducts whilst, in other specimens, the tubular ducts appear more or less fully sclerotised. The tubular ducts of adult female L. clodiensis were studied under a SEM microscope and the waxy tube extruded by this duct is clearly ridged (Table 1: F) (Fontana, 1998). Nevertheless, the presence of tubular ducts with inner ridges was mainly overlooked until the present study.

The first-instar nymphs of Lecanopsis are characterized by the peculiar minaret-like setae along the body margin (Pellizzari \& Fontana, 2001a), so far unknown in other coccid genera. The distribution and number of both these minaret-like setae and the spiracular disc pores can help in identifying Lecanopsis species (Pellizzari, 1995; Pellizzari \& Fontana, 2002). The first-instar nymphs of H. ferenci are of the "Lecanopsis type", with minaret-like setae on the body margin, highlighting an unexpected affinity among Lecanopsis and Hadzibejliaspis. The morphology of second- and third-instar females of Lecanopsis species is also peculiar, but unfortunately the same stages are not known in Hadzibejliaspis.

TABLE 1. A—Spiracle and peritreme cavity of Hadzibejliaspis ferenci n. sp., adult female; B—Spiracle and peritreme cavity of Lecanopsis sicula n. sp., adult female; C—Hind leg of Hadzibejliaspis ferenci n. sp., adult female; D-Hind leg of Lecanopsis sicula n. sp., adult female; E—Dorsal dark-rimmed multilocular disc-pores in Lecanopsis mirabilis Pellizzari \& Fontana; F—ridged waxy tube extruded by a dorsal tubular duct of Lecanopsis clodiensis (Pellizzari).

With regard to their biology, Goux (1943), Koteja (1969, 1978) and Danzig (1986) report that, unlike Lecanopsis species, the other Eriopeltinae overwinter in the egg stage. A detailed biology is only known for L. formicarum, L. clodiensis and L. pellizzariae (Boratynski et al., 1982; Pellizzari \& Fontana, 2001; Fontana \& Malagnini, 2001). These species overwinter as third-instar females and second-instar male nymphs, with the adult females usually present from April to late June, depending on meteorological conditions and locations. The collection dates on the labels of other adult female Lecanopsis species agree with this conclusion (Pellizzari \& Fontana, 2002). On the other hand, L. salvatorei perhaps overwinters in the adult stage, as suggested by the
collecting date on the slide labels (October 26). With regard to the two Hadzibejliaspis species, the few known biological data only indicate that the adult females were collected and laid eggs during May and June, so that it seems unlikely they overwinter in the egg stage. Based on the above reasons, Lecanopsis and Hadzibejliaspis possibly form a related group: their peculiar first-instar morphology confirms this point of view. Psilococcus, a monotypic genus, should belong to the same group because of the presence of spiracles opening into a large peritreme cavity with many inner spiracular disc pores, as highlighted by Tang et al. (1990). Incidentally, the adult female Psilococcus has a ventral marginal band of 5-locular pores, so resembling the second- and third-instars of several Lecanopsis species; unfortunately, the nymphs of Psilococcus are unknown and, moreover, it develops on Cyperaceae and overwinters in the egg stage (Koteja, 1969). On the basis of female morphology, it seems likely that Exaeretopus, Luzulaspis and Poaspis are closely related genera but the relationships and affinities among the Eriopeltinae can be clarified only by more intensive collecting and with more biological and molecular data, plus studies of the first instars and adult males.

Acknowledgements

I am extremely grateful to Dr. Ferenc Kozár (Hungarian Academy of Sciences, Plant Protection Institute, Budapest, Hungary) for encouraging me to write this paper and for his many helpful and important suggestions. Many thanks to Christopher Hodgson (The National Museum of Wales, Cardiff, UK), to Ilya A. Gavrilov-Zimin (Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia), and two anonymous reviewers for useful comments and revision of the text; to Prof. A. Tranfaglia and Prof. Donatella Battaglia (University of Basilicata, Italy), who made available the slides of Salvatore Marotta, so making possible the description of the new species in his memory, to Dr. Paolo Fontana (Foundation Edmund Mach, Pergine Valsugana, Italy) who made available data of his PhD thesis and to P. Paolucci (DAFNAE, University of Padova, Italy), who kindly made the drawings.

References

Ben-Dov, Y. \& Hodgson, C.J. (1997) Collecting and mounting,. In: Ben-Dov, Y. \& Hodgson, C.J. (Eds.), World Crop Pests. Soft Scale Insects, Their Biology, Natural Enemies and Control, vol.7A. Elsevier, Amsterdam, pp. 389-395.
Boratynski, K.L., Pancer-Koteja, E. \& Koteja, J. (1982) The life history of Lecanopsis formicarum Newstead (Homoptera, Coccinea). Annales Zoologici. Warszawa, 36, 517-537.
Borchsenius, N.S. (1957) Subtribe Mealybugs and Scales (Coccoidea). Soft scale insects Coccidae. Vol. IX. (In Russian). Fauna SSSR. Zoologicheskii Institut Akademii Nauk SSSR. N.S. 66, 493 pp.
Danzig, E.M. (1986) Coccids of the Far-Eastern USSR (Homoptera: Coccinea). Phylogenetic analysis of coccids in the world fauna. Amerind Publishing Co., New Delhi, India. 450 pp.
Fontana, P. (1998) Studi sugli Homoptera Coccoidea: revisione della tribù Lecanopsini Tang et al. 1990). PhD Thesis, Università di Padova, 246 pp .
Fontana, P. \& Malagnini, V. (2001) A new species of the genus Lecanopsis Targioni Tozzetti, 1868 (Hemiptera: Coccoidea: Coccidae) from the Italian peninsula: description and remarks on its life history. Bollettino di Zoologia Agraria e di Bachicoltura, Special Issue: Proceedings of the ISSIS IX International Symposium on Scale Insect Studies 33(3), 111-123.
Fontana, P. \& Pellizzari, G. 2001 (1999) On the identity of the genus Lecanopsis Targioni Tozzetti. Entomologica, Special Issue: Proceedings of the ISSIS VIII International Symposium on Scale Insect Studies Wye College (U.K.), Aug. 31st-Sept. 6th, 1998, 67-72.
Giliomee, J.H. (1967) Morphology and Taxonomy of Adult Males of the family Coccidae (Homoptera: Coccoidea). Bulletin of the British Museum (Natural History), Entomology, Supplement, 7, 168 pp.
Goux, L. (1943) Hivernation et diapause hivernale chez les coccides de la faune Française (Hem. Coccoidea), et remarques sur le déterminisme de la diapause. Bulletin du Muséum d'Histoire Naturelle de Marseille, 3, 126-145.
Hadzibejli, Z.K. (1960) New species of coccids (Homoptera, Coccoidea) from Georgia (in Russian). Trudy Akademii Nauk Gruzinskoy SSR Instituta Zashchitii Rastenii, 13, 299-321.
Hadzibejli, Z.K. (1973) Little-known species of the family Coccidae (Homoptera, Coccoidea) in the fauna of eastern Transcaucasia (in Russian). Entomologicheskoe Obozrenye, 52, 835-844.
Hodgson, C.J. (1994) The Scale Insect Family Coccidae: an identification manual to genera. CAB International, Wallingford, Oxon, UK. 639 pp.
Hodgson, C.J. (1997) Classification of the Coccidae and related coccoid families: 157-201. In: Ben-Dov, Y. \& Hodgson, C.J.,

Eds., Soft Scale Insects: Their Biology, Natural Enemies and Control, Vol. 7A. Elsevier, Amsterdam \& New York. 452 pp.
Howell, J.O. \& Kosztarab, M. (1972) Morphology and systematics of the adult females of the genus Lecanodiaspis (Homoptera: Coccoidea: Lecanodiaspididae). Virginia Polytechnic Institute and State University, Research Division Bulletin, 70, 248 pp.
Kosztarab, M. \& Kozár, F. (1988) Scale Insects of Central Europe. Akademiai Kiado, Budapest. 456 pp.
Koteja, J. (1969) Psilococcus parvus Borchsenius (Homoptera, Coccoidea) - morphology, biology and taxonomy. Acta Zoologica Cracoviensia, 14, 21-41.
Koteja, J. (1970) Systematic position of the genus Vittacoccus Borchsenius (Homoptera, Coccoidea). Polskie Pismo Entomologiczne, 40, 223-231.
Koteja, J. (1978) An introduction to the revision of the Eriopeltini Sulc (Homoptera, Coccidae), with establishment of two new genera. Polskie Pismo Entomologiczne, 48, 311-327.
Kozár, F. \& Ben-Dov, Y. (1997) Zoogeographical considerations and status of knowledge of the family: 213-228. In: Ben-Dov, Y. \& Hodgson, C.J., Eds., Soft Scale Insects: Their Biology, Natural Enemies and Control, Vol. 7A. Elsevier, Amsterdam \& New York. 452 pp.
Pellizzari, G. (1995) A new species of Paralecanopsis (Homoptera Coccoidea Coccidae) from Italy. Bollettino di Zoologia Agraria e di Bachicoltura Ser. II, 27, 35-44.
Pellizzari, G. \& Fontana, P. (2001) A study on the life history of Lecanopsis clodiensis (Pellizzari) n. comb. Hemiptera: Coccoidea: Coccidae). Proceedings of the ISSIS VIII International Symposium on Scale Insect Studies, Wye (U.K.), Aug. 31st-Sept. 6th, 1998, Entomologica, Special Issue 33 (1999), 323-332.
Pellizzari, G. \& Fontana, P. (2001a) The genus Lecanopsis Targioni Tozzetti (Hemiptera, Coccidae): present status and remarks on species identification. Bollettino di Zoologia Agraria e di Bachicoltura, Special Issue: Proceedings of the ISSIS IX International Symposium on Scale Insect Studies, 33(3), 179-187.
Pellizzari, G. \& Fontana, P. (2002) A systematic revision of the genus Lecanopsis Targioni Tozzetti (Hemiptera, Coccoidea, Coccidae). Bollettino di Zoologia Agraria e di Bachicoltura, 34(2), 129-212.
Řeháček, J. (1960) Fauna Puklic (Coccidae) Slovenska. Biologické Práce, 6, 1-88.
Šulc, K. (1941) Mohelnia festuceti n. gn., n. sp. (Lecaniidae, Eriopeltini, Coccoidea, Hemiptera). Acta Societatis Scientiarum Naturalium Moravicae, 13, 1-17.
Tang, F.T., Hao, J., Xie, Y. \& Tang, Y. (1990) Family group classification of Asiatic Coccidae (Homoptera: Coccoidea, Coccidae). Proceedings of the Sixth International Symposium of Scale Insect Studies, Part II. Cracow, August 6-12, 1990. Agricultural University Press, Cracow, 75-77.
Tang, F.T. (1991) The Coccidae of China (in Chinese; summary in English). Shanxi United Universities Press, Taiyuan, P. R. China, 377 pp .

