Monograph

ZOOTAXA

3287

A review of the genera of Australian cicadas (Hemiptera: Cicadoidea)

M. S. MOULDS
Entomology Dept, Australian Museum, 6 College Street, Sydney N.S.W. 2010
E-mail: msmoulds@gmail.com

M. S. MOULDS

A review of the genera of Australian cicadas (Hemiptera: Cicadoidea)
(Zootaxa 3287)
$262 \mathrm{pp} . ; 30 \mathrm{~cm}$.
30 Apr. 2012
ISBN 978-1-86977-889-7 (paperback)
ISBN 978-1-86977-890-3 (Online edition)

FIRST PUBLISHED IN 2012 BY
Magnolia Press
P.O. Box 41-383

Auckland 1346
New Zealand
e-mail: zootaxa@mapress.com
http://www.mapress.com/zootaxa/
© 2012 Magnolia Press
All rights reserved.
No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.

ISSN 1175-5326	(Print edition)
ISSN 1175-5334	(Online edition)

TABLE OF CONTENTS

Abstract 5
Introduction 5
Historical review 6
Terminology 7
Materials and methods 13
Justification for new genera 14
Summary of classification for Australian Cicadoidea 21
Key to tribes of Australian Cicadinae 25
Key to the tribes of Australian Cicadettinae 26
Key to genera of Australian Cicadoidea 26
Generic reviews and diagnoses 46
Genus Abricta Stål 46
Genus Adelia gen. n 46
Genus Aleeta Moulds 49
Genus Anapsaltoda Ashton 51
Genus Arenopsaltria Ashton 53
Genus Arunta Distant 55
Genus Auscala gen. n. 57
Genus Baeturia Stål 59
Genus Birrima Distant 59
Genus Burbunga Distant 62
Genus Caliginopsalta Ewart 64
Genus Chelapsalta gen. n 67
Genus Chlorocysta Westwood 69
Genus Chrysocicada Boulard 71
Genus Cicadetta Kolenati 73
Genus Clinata gen. n. 76
Genus Clinopsalta gen. n. 78
Genus Crotopsalta Ewart 80
Genus Cyclochila Amyot and Serville 83
Genus Cystopsaltria Goding and Froggatt 84
Genus Cystosoma Westwood 86
Genus Diceropyga Stål 90
Genus Diemeniana Distant 92
Genus Dipsopsalta gen. n. 95
Genus Drymopsalta Ewart 98
Genus Erempsalta gen. n. 100
Genus Ewartia gen. n. 103
Genus Froggattoides Distant 105
Genus Gagatopsalta Ewart 108
Genus Galanga gen. n. 110
Genus Gelidea gen. n. 112
Genus Glaucopsaltria Goding and Froggatt 115
Genus Graminitrigrina Ewart and Marques 117
Genus Gudanga Distant 119
Genus Guineapsaltria de Boer 121
Genus Gymnotympana Stål 123
Genus Heliopsalta gen. n. 126
Genus Henicopsaltria Stål 128
Genus Illyria Moulds 130
Genus Jassopsaltria Ashton 133
Genus Kikihia Dugdale 135
Genus Kobonga Distant 137
Genus Lembeja Distant 139
Genus Limnopsalta gen. n. 141
Genus Macrotristria Stål 144
Genus Marteena Moulds 146
Genus Melampsalta Kolenati 148
Genus Mugadina gen. n. 149
Genus Myopsalta gen. n. 151
Genus Nanopsalta gen. n. 154
Genus Neopsaltoda Distant 156
Genus Neopunia gen. n. 158
Genus Noongara gen. n. 160
Genus Notopsalta Dugdale 162
Genus Owra Ashton 163
Genus Oxypleura Amyot and Serville 165
Genus Palapsalta gen. n. 167
Genus Paradina gen. n. 169
Genus Parnkalla Distant 172
Genus Parnquila gen. n. 174
Genus Pauropsalta Goding and Froggatt 176
Genus Physeema gen. n. 179
Genus Pictila gen. n. 182
Genus Pipilopsalta Ewart 184
Genus Platypleura Amyot and Serville 186
Genus Platypsalta gen. n. 186
Genus Plerapsalta gen. n. 189
Genus Psaltoda Stål 192
Genus Punia gen. n. 195
Genus Pyropsalta gen. n. 197
Genus Quintilia Stål 199
Genus Samaecicada Popple and Emery 199
Genus Simona gen. n. 202
Genus Sylphoides gen. n. 204
Genus Talcopsaltria Moulds 206
Genus Tamasa Distant 209
Genus Taurella gen. n. 211
Genus Telmapsalta gen. n. 214
Genus Terepsalta gen. n 216
Genus Tettigarcta White 219
Genus Thaumastopsaltria Kirkaldy 222
Genus Thopha Amyot and Serville 224
Genus Toxala gen. n. 226
Genus Tryella Moulds 229
Genus Urabunana Distant 231
Genus Uradolichos gen. n. 233
Genus Venustria Goding and Froggatt 235
Genus Yoyetta gen. n. 237
Acknowledgments 240
References 241
Systematic index 255

Abstract

The identities of all 242 described Australian Cicadoidea species (and their synonyms) have been confirmed, mostly by examination of types, and their generic status reviewed. Male genitalia of all but two Australian species have been examined and those of the type species of each genus are figured. The first key to genera incorporating both males and females is presented along with a brief history of Australian genera. A cladistic analysis incorporating 71 species from the tribe Cicadettini is also presented, the primary purpose of which was to identify generic groupings and their apomorphies.

The following 34 genera are described as new: Adelia gen. n., Auscala gen. n., Chelapsalta gen. n., Clinopsalta gen. n., Clinata gen. n., Dipsopsalta gen. n., Erempsalta gen. n., Ewartia gen. n., Galanga gen. n., Gelidea gen. n., Heliopsalta gen. n., Limnopsalta gen. n., Mugadina gen. n., Myopsalta gen. n., Nanopsalta gen. n., Neopunia gen. n., Noongara gen. n., Palapsalta gen. n., Paradina gen. n., Parnquila gen. n., Physeema gen. n., Pictila gen. n., Platypsalta gen. n., Plerapsalta gen. n., Punia gen. n., Pyropsalta gen. n., Simona gen. n., Sylphoides gen. n., Taurella gen. n., Telmapsalta gen. n., Terepsalta gen. n., Toxala gen. n., Uradolichos gen. n., Yoyetta gen. n.

Three genera, Cicadetta Kolenati, Notopsalta Dugdale, and Quintilia Stål, are removed from the fauna of Australia. Twelve species names are placed into junior synonymy and 74 new combinations are established. As a consequence of this review all 81 genera currently recognised as occurring in Australia are redefined using a common suite of characters identified as meaningful at generic level. To these have been added a further 35 characters when describing genera in the tribe Cicadettini in order to differentiate a large number of closely allied genera.

Key words: Burbungini, Chlorocystini, Cicadettinae, cicada, Cicadettini, Cicadidae, Cicadinae, Cicadini, Cryptotympanini, Cyclochilini, Jassopsaltriini, Key to cicada genera of Australia, Key to cicada tribes of Australia, Prasiini, Platypleurini, Talcopsaltriini, Tamasini, Taphurini, Tettigarctidae, Thophini, wax secretion

INTRODUCTION

In an earlier work (Moulds 1990) I reviewed the Australian cicada fauna as then known. While preparing that text it became evident that generic definitions as a whole were inadequate and many species did not fit comfortably within the genera in which they were placed. In particular, many species included within Cicadetta, Pauropsalta and Urabunana (together encompassing nearly half the described Australian fauna at that time) showed obvious incompatibilities. Further, the identities of many described Australian species remained uncertain. These impediments have hindered the construction of a satisfactory key to the Australian genera. The most recent key available is that of Distant (1906d) but it is now outdated and largely unworkable for the Australian fauna.

The primary aim of this study has been to provide a generic overview for the described Australian species. The task of describing the plethora of new Australian species (and any new genera that they may require) is not addressed.

The generic descriptions provided here are intrinsically linked to the cladistic analysis of cicada family groups (Moulds 2005a). The data set of character attributes upon which that cladistic study was based has provided a basis for selecting characters meaningful at generic level for this generic review. Some additional characters uninformative as cladistic attributes but otherwise obvious features, i.e. the distribution of wing infuscations, colour, and the width of the head in relation to the thorax (the last a traditional character featuring often in generic and tribal descriptions) have been added to the descriptions to help characterize genera. Also, autapomorphies have been added. The descriptions treat characters in the same order, thus permitting direct comparisons between genera. Distinguishing features that characterize each genus are summarised after generic diagnoses.

Since the publication of the phylogenetic analysis of Australian genera by Moulds (2005a), six new genera from the tribe Cicadettini have been described (Ewart 2005a, Ewart \& Marques 2008, Popple \& Emery 2010), plus a new genus in a new monotypic tribe (Moulds 2008b). I now add a further 34 genera, the majority of which fall within the tribe Cicadettini. Many of these are represented by their type species in the phylogeny of Moulds (2005a).

A total of 81 Australian genera are now recognised, including the 34 described here as new. Cicadetta Kolenati, Notopsalta Dugdale, and Quintilia Stål are no longer considered to be represented in Australia. These generic changes have resulted in 74 new combinations and 12 species names falling as junior synonyms.

All generic descriptions are accompanied by figures of male genitalia (in most cases of the type species). For some genera additional figures included are wing venation, male opercula, head and body forms, and male and
female reproductive systems; the inclusion of these is not consistent and was largely dictated by the availability of figures. Habitus figures of most type species can be found in Moulds (1990); those not figured there are included in the colour plates accompanying this revision. Distribution maps are included for all genera based on published records.

For each genus, under the subheading 'Discussion', references are provided relating to published accounts of included species. These primarily incorporate publications appearing after 1990 and are not necessarily exhaustive; information on Australian cicadas published prior to 1990 has been previously summarised by Moulds (1990).

For some genera a review of selected species is provided. Such reviews mostly concern new synonymies or nomenclatorial discussion relating to the species concerned.

This study also presents the first key to genera for Australian cicadas that accommodates both males and females. A supplementary cladistic study is presented covering those genera with an exposed endotheca and a trifid theca that were inadequately represented in Moulds (2005a).

ABBREVIATIONS
The following abbreviations have been used for the names of institutions mentioned in the text.
AM Australian Museum, Sydney
ANIC Australian National Insect Collection, Canberra
BMNH The Natural History Museum, London
HOPE Hope Entomological Collections, Oxford University Museum, Oxford
MHUB Museum für Natukunde der Humboldt, Universität zu Berlin
MM Macleay Museum, University of Sydney
MNHN Museum National d'Histoire Naturelle, Paris
MV Museum of Victoria, Melbourne
QM Queensland Museum, Brisbane
SAM South Australian Museum, Adelaide
UZMC Universitets Zoologiske Museum, Copenhagen
WAM Western Australian Museum, Perth
ZMH Zoologischen Museums, Hamburg

HISTORICAL REVIEW

Fabricius (1775) adopted Linnaeus's genus Cicada when describing the first Australian cicadas, which had been collected by Sir Joseph Banks during Cook's third voyage of discovery around the world. Over time the concept of the genus Cicada has narrowed and now includes just a small group of species restricted to the Palaearctic region but, remarkably, this genus has only recently been disassociated with the Australian cicada fauna (Moulds 1990).

All cicadas remained in Cicada until Burmeister (1835) erected Hemidictya for a distinctive South American species. Westwood (1840) added Polyneura and later Cystosoma for the Australian species C. saundersii (Westwood 1842b). Soon after, Amyot and Serville (1843) created 15 new genera of which five included Australian species. Commenting on these new genera, Westwood (1843) wrote 'Within the last few days has been published, M. Serville's volume . . . adopting the principle that every group of species logically constitutes a genus, we find the genus Cicada of modern authors broken up . . .' By 1859, 31 of the then known 41 Australian species still remained in Cicada (Dohrn 1859).

The next half century saw a huge increase in both numbers of species and genera so that by the time the next world catalogue of cicadas appeared (Distant 1906d), 1038 species and 179 genera were recognized. Of these, 128 species in 32 genera were recorded from Australia. While Distant was preparing his catalogue, Goding and Froggatt (1904) published their monograph of the Australian Cicadidae with 119 species in 21 genera, including four
genera that they described as new. Like Distant, Goding and Froggatt included keys to genera and their monograph remained a basic reference to the Australian cicada fauna until A.N. Burns published his checklist of Australian cicadas (Burns 1957). By this time the known Australian cicada fauna had almost doubled to 206 species in 44 genera, in large part through the work of Ashton (1912a, c,d,e, 1914a,b, 1921) and Distant (1907, 1910, 1913a, 1914c, 1915) who together added most of the new genera and species.

When Metcalf (1963) published his world catalogue six years later no additional species or genera had been added to the Australian fauna. There was, however, one notable change. Eighty-three species (or some 40% of the known Australian fauna at that time) had been included by Burns (1957) in the single genus Melampsalta Kolenati. Metcalf (1963), however, distributed these species between Pauropsalta Goding and Froggatt and Cicadetta Kolenati for the following reasons. (a) Metcalf was following literature only to 1955 so he consequently retained the genus Pauropsalta even though Burns had placed it as a junior synonym of Melampsalta six years prior to the publication of Metcalf's work. (b) The question of status regarding Melampsalta and Cicadetta is a complex one, the confusion surrounding these two genera stemming from three sources: authorship of these genera, their type species, and their synonymy. These matters have already been discussed at length by Boulard $(1988,1998)$ and Moulds (1988) who concluded correctly at the time that both Melampsalta and Cicadetta should be recognised and both take Amyot (1847) as their author and date. However, recently the International Commission of Zoological Nomenclature suppressed Amyot's 1847 work as it relates to cicadas (Opinion 2165) making the names in it unavailable for nomenclatorial purposes; the names Cicadetta and Melampsalta now date from Kolenati (1857). Duffels and van der Laan (1985) adopted Melampsalta and Pauropsalta for the Australian species in question but those in Melampsalta were returned to Cicadetta (Moulds 1990) following the argument of Moulds (1988).

Apart from the discrepancies relating to Cicadetta, Melampsalta and Pauropsalta the genera and species for Australian cicadas in the catalogues of Burns (1957), Metcalf (1963) and Duffels and van der Laan (1985) are nearly identical; Duffels and van der Laan included just one additional genus (Notopsalta Dugdale, 1972).

In the most recent review of the Australian cicada fauna (Moulds 1990), 39 genera were recognised, five fewer than in Burns (1957). Two new genera (Illyria Moulds, 1985 and Marteena Moulds, 1986) were added, one was synonymised (Paragudanga Distant 1913), and the European genus Cicada was finally removed from an association with the Australian fauna through a species synonymy. Since 199013 further genera have been added to the Australian fauna; Boulard (1989) added the new genus Chrysocicada, de Boer (1993a 1995) added the new genus Guineapsaltria in addition to transferring Australian species to Gymnotympana Stål which also had the effect of removing Baeturia Stål, Ewart (2005a) and Ewart \& Marques (2008) added Caliginopsalta, Crotopsalta, Drymopsalta, Gagatopsalta, Graminitigrina and Pipilopsalta, Moulds (2003, 2008) added Talcopsaltria and established Aleeta and Tryella as replacements for Abricta species in the Australian fauna and most recently Popple \& Emery (2010) added Samaecicada.

These additions raised the total number of genera represented in Australia to 50, just six more than the number catalogued by Burns (1957). The apparent shortfall, in large part, can be explained by the number of exotic species included doubtfully by Burns. Of these 50 genera, Cicadetta was by far the largest genus with 55 species, or 25% of the described Australian fauna (Moulds 1990). Pauropsalta was the second largest with 35 species (Ewart 1989b, Moulds 1990) followed by Macrotristria Stål with 21 species (Moulds 1990). These three genera together accounted for more than half of the known Australian species. The present review significantly alters these statistics. As mentioned earlier Cicadetta is excluded from the Australian fauna, Pauropsalta becomes the most speciose genus with 26 Australian species, and Macrotristria becomes the second largest genus with 18 Australian species.

TERMINOLOGY

Morphological features mentioned in this work are illustrated in Figs 1-27. Terminology mostly follows that of Moulds (2005a). Terminology for timbal structures is adopted from Bennet-Clark (1997). Two structures, the anterior and posterior cranial depressions, are derived from Moulds (2008b).

2

FIGURES 1-2. Head, Tamasa tristigma, Cicadinae: (1) anterior view; (2) dorsal view. Adapted from Moulds (2005a). Terminologies in brackets also in current use. ac anteclypeus; e compound eye; eps epicranial suture; epsa anterior arm of epicranial suture; fcs (ess) frontoclypeal suture, or epistomal suture; fl flagellum of antenna; flm 2 second flagellomere; fr frons; \mathbf{g} gena; \mathbf{l} ($\mathbf{m p}$) lorum, or mandibular plate; labi labium; labr labrum; \mathbf{m} mentum; oc ocellus, median or lateral; oct ocular tubercle; pc postclypeus; ped pedicel; \mathbf{r} rostrum; \mathbf{s} stylets; sap supra-antennal plate; $\mathbf{s c p}$ scape; $\mathbf{t g}$ transverse groove; \mathbf{v} (ep) vertex, or epicranium.

FIGURES 5-6. Fore and hind wings, Tamasa tristigma, Cicadinae. (5) wing and cell notation; (6) vein notation. Adapted from Moulds (2005a). Terminologies in brackets are also in current use. A anal vein; a apical cell; aa anal angle; ac1 anal cell 1; ac2(v) anal cell 2 or vannus; ac3(j) anal cell 3 or jugum; al anal lobe ($=$ ac2 + ac3); ap apex of wing; arc arculus; av ambient vein; be basal cell; $\mathbf{b m}$ basal membrane; \mathbf{C} costal vein; cc costal cell; $\mathbf{c f}$ claval fold; clv clavus; cuc cubital cell; $\mathbf{C u A}$ cubitus anterior vein; $\mathbf{C u P}$ cubitus posterior vein; inf infuscation; $\mathbf{j f}$ jugal fold; \mathbf{M} median vein; \mathbf{m} medial crossvein; ma marginal area; $\mathbf{m c}$ medial cell, (also ulnar cell 4 on fore wing); \mathbf{m}-cu mediocubital crossvein; \mathbf{n} node; $\mathbf{n l}$ nodal line; nli nodal line intersection; \mathbf{p} plaga; pt pterostigma (pigmentation); \mathbf{R} radius; \mathbf{r} radial crossvein; RA radius anterior; $\mathbf{r c}$ (dc) radial cell, or discal cell; $\mathbf{r}-\mathbf{m}$ radiomedial crossvein; $\mathbf{R P}$ radius posterior; $\mathbf{S c}$ subcostal vein; \mathbf{u} ulnar cell; $\mathbf{v f}$ vannal fold; wm wing margin.

FIGURES 3-4. Male thorax, with head in situ, Tamasa tristigma, Cicadinae. (3) dorsal view; (4) ventral view. Adapted from Moulds (2005a). Terminologies in brackets also in current use. aem 2 anepimeron 2; aes $\mathbf{2}$ anepisternum 2; af ambient fissure of pronotum; bs $\mathbf{2}$ basisternum 2; bs $\mathbf{3}$ basisternum 3; ce (scl) cruciform elevation, or scutellum; em 2 epimeron 2; em $\mathbf{3}$ remnant of epimeron 3 ; $\mathbf{e m l}$ ($\mathbf{o p} \mathbf{2}$) epimeral lobe, or operculum 2; es $\mathbf{2}$ episternum 2; es $\mathbf{3}$ episternum 3; kem $\mathbf{2}$ katepimeron 2; kes $\mathbf{2}$ katepisternum 2; la lateral angle of pronotal collar; lf lateral fissure; $\mathbf{l m}$ lateral margin of pronotum; lsig lateral sigillum; $\mathbf{m b}$ membrane; mc (mn 3) meracanthus, or meron 3; mes mesonotum; met metanotum; mn $\mathbf{2}$ meron 2 ; op operculum (includes epimeron 3); pa paranotum (lateral part of pronotal collar); pc pronotal collar; pf paramedian fissure; pro pronotum; ps parapsidal suture; sd scutal depression; ssig submedian sigillum; st I abdominal sternite I; tn $\mathbf{2}$ trochantin 2; tn $\mathbf{3}$ trochantin 3; wg wing groove.

FIGURES 7-8. Male abdomen, Tamasa tristigma, Cicadinae: (7) abdomen, ventral view; (8) abdomen, dorsal view. Partly adapted from Moulds (2005a). as anal style; aud auditory capsule; epi epipleurite; hpi hypopleurite; pyg pygofer; sp spiracle; st sternite; t tergite; tc timbal cover; tcav timbal cavity; tim timbal; tym tympanum; tyme tympanal cavity.

FIGURES 9-11. Male timbal and legs, Tamasa tristigma, Cicadinae: (9) left timbal with long ribs numbered, anterior at left; (10) fore leg; (11) hind leg. Partly adapted from Moulds (2005a). ap apodeme pit; bs basal spur; clw pretarsal claw; cox coxa; fem femur; ir intercalary rib; lr long rib; me meracanthus; mtt metatarsus; prt pretarsus; psp primary spine of fore femur; spu tibial spur; ssp secondary spine of fore femur; tar tarsus; tar1, 2, $\mathbf{3}$ tarsomeres 1,2 or 3; tco tibial comb; tib tibia; $\mathbf{t p}$ timbal plate; tro trochanter; ttco thumb of tibial comb.

12

FIGURES 12-13. Female terminalia, Arunta perulata, Cicadinae: (12) lateral view with ovipositor free of sheath; (13) ventral view with ovipositor divided exposing ovipore and orifice of spermathecal gland. Adapted from Moulds (2005a). Terminologies in brackets are also in current use. ab 9 abdominal segment 9 or tergite 9 ; as anal styles; cpp (gp) copulapore, or gonopore; db dorsal beak; gx VIII, IX (vf 1, 2) gonocoxites VIII and IX or valvifers 1 and 2; gy VIII-X, (va 1-3) gonapophyses VIII, IX or X or valvulae 1,2 or 3 ; hpi $7, \mathbf{8}$ hypopleurites 7 and 8 ; im intersegmental membrane; os ovipositor sheath (= gonocoxite IX + gonapophysis X); o ovipositor (= gonapophyses VIII + IX); ovp ovipore; sgo orifice of spermathecal gland; sp 7, $\mathbf{8}$ spiracles 7 and 8 ; st VI, VII sternites VI, VII; $\mathbf{s t g}$ stigma; $\mathbf{t} \mathbf{6 , 7 , 8} \mathbf{8}$ tergites 6,7 or 8 .

FIGURES 14-20. Male genitalia: (14) lateral view, Tettigarcta crinita, Tettigarctidae; (15) ventral view, same species; (16) aedeagus, lateral view, same species. (17) lateral view, Tryella ochra, Cicadettinae; (18) ventral view, same species; (19) aedeagus, lateral view, same species; (20) aedeagus, lateral view, Aleeta curvicosta, Cicadettinae. Adapted from Moulds (2005a). aed aedeagus; as anal styles; at anal tube; bl basal lobe of pygofer; bp basal plate; cl clasper; cc conjunctival claw; cor cornuti; db dorsal beak; fl flabellum; gon gonopore; lpu lateral process of uncus; pal palearis; pyg pygofer; sbl secondary basal lobe of pygofer; ss sclerital suture; st sinewation; sty (ha, para) style (= harpagone or paramere); th theca ; un uncus; upl upper lobe of pygofer; vbp ventro-basal pocket; ve (en) vesica (= endophallus); vr ventral rib.

?
21

25

FIGURES 21-27. Male genitalia: (21) lateral view, Neopsaltoda crassa, Cicadinae; (22) ventral view, same species; (23) lateral view, Kobonga umbrimargo, Cicadettinae; (24) ventral view, same species; (25) aedeagus, lateral view, same species; (26) male reproductive system, Tamasa tristigma, Cicadinae; (27) female reproductive system, dorsal view, Arunta perulata, Cicadinae. Terminology in brackets also in current use. Adapted from Moulds (2005a). aed aedeagus; ag accessory gland; as anal styles; at anal tube; bl basal lobe of pygofer; bp basal plate; $\mathbf{c f}$ carrefour; cl clasper; $\mathbf{c o}$ common oviduct; db dorsal beak; ds distal shoulder; dvp dorsovaginal pouch; ejb ejaculatory bulb; ejd ejaculatory duct; end endotheca; fg filamentous gland; gon gonopore; \mathbf{h} hinge; lo lateral oviduct; mdl median lobe of uncus; o ovipositor; ov ovary; psp pseudoparamere; pyg pygofer; rfg reservoir of filamentous gland; sa seminal ampoule; sg spermathecal gland; ss sclerital suture; sv seminal vesicle of vas deferens; tes testis; tesf testicular follicles; tf terminal filament of ovary; th theca; upl upper lobe of pygofer; vd vas deferens; vr ventral rib; vs ventral support.

MATERIALS AND METHODS

Specimens

The identity of all described Australian species has been confirmed by reference to type material where it could be located. Male genitalic dissections were prepared from representatives of all species except Pauropsalta rubra (Goding and Froggatt) and P. stigmatica Distant, both of which were described from females and have no associated males, and Pauropsalta castanea Goding and Froggatt and Macrotristria bindalia Burns for which specimens were not available for dissection. Most of the specimens dissected were from the author's collection, otherwise from material (often type material) either in the AM or borrowed from ANIC, BMNH, HOPE, MM, MNHP, MV and SAM. Dissections of male and female reproductive systems were made from fresh material collected for that purpose.

Dissection of male genitalia

Male genitalia (pygofer and allied structures) were removed from relaxed specimens to avoid damage during excision. The pygofer was carefully extracted from the terminal abdominal segments and cut loose, often in conjunction with sternite VIII which can be difficult to separate.

The extracted pygofer (with or without sternite VIII) was placed in $10 \% \mathrm{KOH}$ at room temperature for 8-10 hours, washed, and transferred to 50% ethanol for a few minutes before placement in 75% ethanol for permanent storage. Excess muscle tissue and any attached intersegmental membrane were carefully removed prior to examination.

Dissection of male reproductive system

The following procedure has proved effective and was developed by trial and error during more than 100 dissections.

Dissections were prepared from either freshly killed specimens or from frozen specimens. Specimens collected during field work were successfully stored on party ice (tested to two weeks) or dry ice prior to permanent deep freeze storage. Care should be taken not to dehydrate frozen specimens in 'frost free' freezers.

Dissections were performed under saline solution (approximately 0.6 g per $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) to which was added approximately 5% by volume of ethyl alcohol to partly harden and whiten delicate translucent tissue. Dissecting dishes incorporated a bottom layer of 'plasticine' so that specimens could be secured by entomological pins during dissection.

Specimens were dissected from dorsal aspect. Prior to dissection, tergites were cut along the dorsal midline by inserting iris scissors under tergite 8 and cutting forwards to tergite 1 . Similarly, cuts were made either side of the abdomen in the lower lateral region. The abdomen was then cut from the thorax and transferred to the prepared dissecting dish. The specimen was submerged, and pinned exposing the internal abdominal tissues. Clearing away unwanted tissue then proceeded, a slow task often taking several hours and requiring considerable care and patience. The reproductive system is essentially held in place by tracheae. Special care had to be exercised when releasing the testes, which are positioned above the spiracles of sternite VI in all but Tettigarcta. One cannot expect to achieve a successful dissection at a first attempt; in fact multiple dissections are often needed to obtain good results. Drawings were completed prior to storage of dissections in 75% alcohol as shrinkage and distortion occur on transfer.

Dissection of female reproductive system

Procedures were similar to those used for the male. Female reproductive systems, however, present a greater challenge because structures are more complex and the filamentous glands more delicate. The abdomen was left attached to the thorax until the ovaries had been released from their attachment to the thorax. Separation of the ovipositor from abdominal segment 9 required a substantial amount of cutting with iris scissors and was left until all soft tissue structures had been clearly identified.

JUSTIFICATION FOR NEW GENERA

Introduction and Overview

Twenty of the new genera described in this work possess morphological attributes that clearly distinguish them from all other described genera. A number of these new genera (and their distinctive attributes) are represented by their type species in the cladistic analysis of Moulds (2005a). The attributes elucidated in that analysis, together with autapomorphies not included in that analysis, form the basis for defining such genera here.

There remains, however, a group of genera that are not so clearly differentiated morphologically. These all fall within the tribe Cicadettini, and all possess an aedeagus with an exposed endotheca (traditionally known as a trifid aedeagus due to the theca terminating in three sharply-pointed structures, i.e. a pair of long, dorsolateral pseudoparameres and a shorter, spine-like ventral support, the latter resulting from a reduction of the theca that normally encapsulates the endotheca) (Fig 25), and at first these species appear to be congeneric. A recent, and as yet unpublished, molecular phylogenetic study by Hill, Marshall, Simon and others (Hill, Marshall, Simon, pers. comm.) suggests that these species are not congeneric as they are widely scattered among other species also with an exposed endotheca (plus others without an exposed endotheca) that constitute distinct, named genera such as the Australian genera Froggattoides, Urabunana, Pipilopsalta, Caliginopsalta, Gagatopsalta and Drymopsalta, the New Zealand genera Notopsalta and Rhodopsalta, and even the Northern Hemisphere genus Tettigettalna Puissant. To address the problem of generic placement of the most difficult of these species (i.e. those with an exposed and fleshy endotheca), I have undertaken a cladistic analysis of all such described Australian species plus representatives of the three non-Australian genera with an exposed, fleshy endotheca as previously mentioned, plus four species lacking an exposed endotheca (Pauropsalta signata, Urabunana emma, U. festiva and U. marshalli) because they are clearly closely allied to species in the analysis (a total of 71 species in all). The result corresponds well with the molecular data in so far as it identifies most of the same groupings of species here designated as new genera, interspersed between species comprising distinct, named genera that are very different in appearance, and not necessarily possessing a trifid aedeagus. The grouping of species with an exposed, fleshy endotheca into genera is thus based on this cladistic analysis, and the attributes which support the nodes form the basis of the generic definitions.

Cladistic analysis

It should be noted that characters and character states identified here as meaningful for defining those Cicadettini with an exposed fleshy endotheca are supplementary to, and do not replace, the broader set of characters and character states previously identified by Moulds (2005a) for defining all Australian genera.

The species of Cicadettini with an exposed fleshy endotheca incorporated in the cladistic analysis below are listed in Table 1 together with the scoring of their character states. They include amongst others, four species of Pauropsalta incorrectly placed in that genus (because Pauropsalta does not have an exposed fleshy endotheca), the single Australian species of Notopsalta, the type species of Notopsalta from New Zealand, all species of Kobonga, the single described species of Marteena, all Australian species of Cicadetta with an exposed fleshy endotheca, all species of Urabunana with an exposed fleshy endotheca (but not the type species of Urabunana because it does not have an exposed fleshy endotheca and consequently represents a genus outside the study group), the type species of Rhodopsalta from New Zealand, and Tettigettalna argentata representing a group of closely related Palaearctic species with an exposed fleshy endotheca.

While this study concentrates only on the generic placement of described Australian species, it became necessary to include an additional species that was undescribed in the analysis to resolve the position of Pauropsalta dubia and P. mixta. These two species are very similar with a distinctive morphology clearly suggesting they are congeneric. However, one has five hind wing apical cells while the other usually has six. This discrepancy in scoring caused ambiguity (reduced structure) in the tree regarding these two species despite supporting synapomorphies. As most undescribed species believed to be congeneric with these two have six hind wing apical cells, one of these ("Pauropsalta dubia2") was added to the analysis which resolved this problem.

The following characters and character states, believed to be meaningful at generic level, were used in the cladistic analysis. Autapomorphic characters have been included where they were believed to define monotypic genera.

Head width including eyes: (0) about as wide or wider than mesonotum between wings; (1) clearly narrower than width of mesonotum between wings; (2) very narrow so that the distance between lateral ocellus and eye is less than diameter of ocellus.
Pronotum in dorsal view: (0) parallel-sided or widening towards posterior; (1) narrowing towards posterior. Note: Some individuals of species with a parallel-sided pronotum show a tendency for the pronotum to narrow towards the posterior; such individuals are not the norm and the narrowing is not pronounced and these species scored as '0'.
3 Paranota: (0) ampliate, (1) confluent with adjoining pronotal sclerites.
4 Paranota: (0) with no mid lateral tooth; (1) with a mid lateral tooth.
Note: In some species scored as possessing a mid lateral tooth it can be absent or reduced in a few individuals. If a mid lateral tooth is present in most individuals the species is scored as having a tooth. Rare individuals of Cicadetta crucifera have a tooth (usually so on one side only); these individuals are considered atypical and the species is scored as lacking a tooth. Regardless of the scoring of this character for C. crucifera the tree topology does not change.
Fore wing veins M and $C u A$: (0) unfused or abutted on reaching basal cell; (1) meeting basal cell with their stems completely fused as one.
Note: Most specimens of Cicadetta convergens, C. issoides, C. torrida and Kobonga umbrimargo have these veins fused but in some individuals they are not. In K. froggatti most individuals have these veins unfused but in a few they are fused. All of these cases are scored as '?'.
$6 \quad$ Fore wing costal vein of male: (0) gently and evenly curved; (1) strongly bowed on distal half.
7 Fore wing cross veins $r, r-m$ and m : (0) distance between r and $r-m$ much less than distance between $r-m$ and m ; (1) distance between r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m .
Note: This character is variable in C. issoides and has therefore been scored as '?'.
8 Fore wing apical cells: (0) 3-6 about equal to or longer than ulnar cells; (1) mostly very much shorter than ulnar cells.
9 Fore wing apical cells: (0) 8 cells; (1) 9 cells.
10 Fore wing radial cell: (0) shorter than the distance from its apex to wing tip (about three quarters the length or more); (1) very short (about half the length of the distance from its apex to wing tip); (2) very long (about equal to or longer than distance from its apex to wing tip).
Note: Scoring is based on typical specimens as the radial cell length in some species is sometimes variable.
11 Fore wing infuscation:(0) absent from crossvein m-cu; (1) present on crossvein m-cu.
Note: Wing infuscations are usually not reliable indicators of generic relationships; similar infuscations often occur randomly within genera and in unrelated genera, most notably the fore wing infuscations overlaying crossveins r and $\mathrm{r}-\mathrm{m}$. The infuscation scored here, like others below, is one of those less commonly encountered and has been included because it appears to support meaningful relationships within the genus Kobonga.
12 Fore wing infuscation: (0) absent from veins M_{4} and CuA_{1}; (1) present on veins M_{4} and CuA_{1}.
13 Fore wing infuscation: (0) absent from ambient vein; (1) present along much of ambient vein.
14 Hind wing apical cells: (0) with 6 apical cells; (1) with 3,4 or 5 apical cells.
Note: Species normally with 5 hind wing apical cells usually have a small number of individuals with 4 or even 6 apical cells (usually only in one wing); such species are considered to have 5 apical cells and those minority individuals with 4 or 6 are regarded as abnormal. Alternatively, some species normally with 6 apical cells sometimes have 5 and such species are regarded as having 6 .
Hind wing infuscation: (0) absent at distal end of vein 2A and adjacent part of ambient vein; (1) present at distal end of vein 2A and on adjacent part of ambient vein.
16 Hind wing infuscation: (0) absent from ambient vein ignoring region in vicinity of vein 2 A ; (1) present on ambient vein apart from region in vicinity of vein 2 A .
Note: While some wing infuscations are known to vary within genera, the presence of infuscation in this area has been shown to be reasonably consistent within genera and consequently has been included.
17 Timbals: (0) anterior part mostly occupied by ribs; (1) anterior part largely free of ribs.
18 Timbals: (0) with 3 or more long ribs spanning the full height of the timbal; (1) with 2 long ribs spanning the full height of the timbal.
19 Timbal cavity posterior margin: (0) ridged on lower half or so; (1) rounded and completely lacking a ridge on lower half or so.

Note: In some species (e.g., Pauropsalta dubia and Cicadetta hackeri) the ridge is difficult to discern and is best confirmed by a depression immediately posterior to the cavity edge.
20 Male opercula: (0) overall shape rounded with outer margin broadly rounded with a rounded apex directed towards abdominal midline; (1) overall shape longitudinally linear and almost parallel-sided, distally angular, no rounded apical extension towards abdominal midline.
21 Male operculum base (remnant of epimeron 3): (0) normal; (1) much swollen and bubble-like.
22 Male abdomen: (0) as wide as or a little wider than thorax; (1) very much wider than thorax (approximately 1.4 x wider).

23 Male abdomen: (0) not greatly abbreviated; (1) much abbreviated, ratio width/length 1.3 or less.
24 Male tergite 1:(0) narrow along dorsal midline; (1) wide and swollen around dorsal midline.
25 Male tergite 2: (0) measured along dorsal midline about as wide as tergites 3; (1) wide, wider along dorsal midline than any one of tergites 3-7.
Note: This character often shows variation between individuals because of distorted abdomens in dried specimens. Scoring is based on those specimens considered typical.
26 Male sternites:(0) normal, not unusually swollen; (1) swollen so that each is visible in lateral profile. Note: Scoring is based on typical specimens as male sternites can be distorted in dried specimens.
27 Pygofer in ventral view: (0) ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; (1) very wide across upper lobes and thereafter strongly tapered to base.
28 Pygofer upper lobe: (0) moderately developed, clearly lobe-like; (1) weakly developed, more like a rounded protrusion than lobe; (2) undeveloped, barely discernible.
29 Pygofer basal lobe in lateral view: (0) curved evenly to apex; (1) with a subapical outward bump (Fig. 156a); (2) with much of distal margin a little protruding, angled, its margin straight or slightly incurved (Fig. 143a).
30 Pygofer basal lobe in lateral view: (0) abutted against, or partly tucked behind, pygofer margin; (1) clear of pygofer margin.
31 Dorsal beak of male pygofer: (0) with a developed apical spine or pointed apex (visible in dorsal view); (1) with no spine or pointed apex, completely straight or broadly curved across apical region;
32 Dorsal beak of female abdominal segment 9: (0) with a developed apical spine or pointed apex (visible in dorsal view); (1) without a spine or apical point, completely straight or broadly curved across apical region. Note: Occasional specimens of U. wollomombii, N. atrata, C. binotata, C. lactea and C. waterhousei have a very small dorsal beaks; these are treated as abnormal individuals and for these species the dorsal beak is scored as absent.
33 Claspers: (0) unfused; (1) fused around midlength.
34 Claspers: (0) diverging towards distal ends; (1) distally parallel to each other.
35 Claspers: (0) tubular, tapering to a hooked beak-like distal end; (1) essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; (2) essentially flat, wide in lateral view, outer face with an overhanging lip along upper margin; (3) claw-like with minimal cavity ventrally; (4) fang-like, excavated ventrally.
36 Claspers: (0) lacking a rounded, inward-facing swelling on proximal half or so of inner margin; (1) with a rounded, inward-facing swelling on inner margin.
37 Claspers: (0) their apices not widely separated, certainly nowhere near the widest dimensions of the claspers; (1) their apices very widely separated but not forming the widest dimensions of the claspers; (2) their apices very widely separated, forming the widest dimensions of the claspers.
Hinge of aedeagus: (0) possessing a chitinous back; (1) entirely fleshy.
Basal plate: (0) as long as or longer than broad; (1) short and broad; (2) exceedingly short, almost without length.
40 Endotheca: (0) permanently exposed, sclerotized; (1) permanently exposed, soft and fleshy; (2) not exposed.
41 Pseudoparameres in dorsal view: (0) turning in, then gradually diverging; (1) parallel for much of their length then diverging; (2) parallel for their entire length; (3) wide apart, diverging throughout their length; (4) converging throughout their length.

42 Pseudoparameres in lateral view: (0) aligned with thecal shaft for much of their length, distally usually turned down but sometimes nearly straight; (1) directed upwards compared to thecal shaft; (2) aligned with thecal shaft but gently curved down throughout its length.

43 Pseudoparameres, proximal half or so: (0) diverging from ventral support; (1) in line with ventral support.
44 Pseudoparameres: (0) unfused throughout their length; (1) fused for half their length or more.
45 Ventral support: (0) of medium length, no more than about half the length of pseudoparameres; (1) long, about three quarters or more the length of pseudoparameres.

Gudanga boulayi was chosen as the outgroup as it clearly falls outside the species of interest, e.g. those species with an exposed fleshy endotheca (Moulds 2005a). Gudanga species are unusual in that they have opaque black fore wings but nevertheless G. boulayi is sufficiently close to the ingroup taxa to possess all characters perceived as relevant in the analysis.

Data were analysed using the heuristic search parsimony algorithms implemented with PAUP* version 4.0b2 (Swofford 1998). Tree searches utilized the tree bisection reconnection algorithm (TBR) conducting 1,000 random addition searches (RAS) starting from random trees; other settings were left at their default values. The set of shortest trees were filtered using the Filter Trees option to eliminate trees that were less resolved than other compatible trees in order to find the most resolved trees. The chosen tree shown in Fig. 28 was prepared using CLADOS version 1.2 (Nixon 1992) with DELTRAN optimization. Character numbers were adjusted to begin at ' 1 ', rather than the 'zero' default in order to make numbering of characters more logical.

All characters were unweighted and all multistate characters were treated as unordered. Missing and inapplicable character states were scored as '?'. The matrix of taxa and assigned states is given in Table 1. Refer to Figs 1-27 for explanations of morphological terms.

TABLE 1. Character matrix of the 71 species used in the parsimony analysis. Missing data and character states not relevant to a species are scored as "?".

	000000000111111111122222222223333333333444444
Species	123456789012345678901234567890123456789012345
Gudanga boulayi (outgroup)	000
Abricta borealis	000101000000000000000000000000000120000000000
Caliginopsalta percola	011010100000001000000000000000000020011120000
Cicadetta adelaida	000111000000000000000000000000001110000100000
Cicadetta apicata	000110000000000000000000000010000120000100100
Cicadetta bellatrix	000110100000000010101001110000000120010100000
Cicadetta binotata	001010100000000000000000110000000120000100100
Cicadetta brevis	001010100000000000100010000000000120000110100
Cicadetta convergens	$0001 ? 010000000001010100111000000002001010 ? 000$
Cicadetta crucifera	001010100000000000000000110000000120000100100
Cicadetta cuensis	001010100000000000100000000000000120000110100
Cicadetta hackeri	001010100000000000000000000000000030000100101
Cicadetta hermannsburgensis	101010100000000000100000100000000030000100100
Cicadetta incipiens	011110100000000000000000000000000120000100100
Cicadetta issoides	$0010 ? 0 ? 00110000000100001100000000120000110100$
Cicadetta labeculata	000110000000000000000000000000000000000100100
Cicadetta labyrinthica	000110100000000010101001110000000120010100000
Cicadetta lactea	001010100011100000000000110000000120000100100
Cicadetta latorea	000110100000000010101001110000000120010100000
Cicadetta mackinlayi	001010100000000000000000110000000120000100100
Cicadetta melete	000110000000000010001001100000000120010131000
Cicadetta mixta	001010110200010000000000100000000120000110100
Cicadetta multifascia	011110100000000000000000000000000120000100100
Cicadetta oldfieldi	001010100000000000100000000000000120000110100
Cicadetta polita	001010100000000000000000000001000030000142000
	continued next page

continued next page

TABLE 1. (continued)

	000000000111111111122222222223333333333444444
Species	123456789012345678901234567890123456789012345
Cicadetta puer	011010100000000000100000100000000030000100100
Cicadetta quadricincta	000110100000000010101001110000000120010100000
Cicadetta sancta	001010100000000000100000100000000030000100100
Cicadetta spinosa	000110000000000000001000000000000141001101000
Cicadetta stradbrokensis	001010100200000000000000000000000000000100100
Cicadetta torrida	$0001 ? 0000000000001000000000000001120000100000$
Cicadetta tigris	000111000000000000000000000000001110000100100
Cicadetta waterhousei	001010100011100000000000110000000120000100100
Crotopsalta fronsecetes	001010100000000000100000001000110110002110100
Crotopsalta leptotigris	001010100000010000100000001000110110002110100
Crotopsalta plexis	001010100000000000100000001000110110002110100
Crotopsalta poaecetes	001010100000000000100000001000110110002110100
Crotopsalta strenulum	001010100000000000100000001000110110002110100
Diemeniana cincta	000100000000001000000000000000000120000100000
Diemeniana euronotiana	000100100000001000000000000000000120000100000
Diemeniana frenchi	000100100000001000000000000000000120000100000
Diemeniana hirsuta	000100000000001000000000000000000120000100000
Diemeniana neboissi	000100000000001000000000000000000120000100000
Drymopsalta crepitum	001010100000000000110000001000010110000100100
Drymopsalta daemeli	001010100000010000110000001000000110000100100
Froggattoides pallidus	201010101000000000100000000200000110010110101
Froggattoides typicus	201010100000000000100000000200000110010110101
Gagatopsalta auranti	001010100000000000000000100020000030200102100
Gagatopsalta obscura	001010100000000000000000100020000030200102100
Kobonga apicans	000110000000100100000000000010000120000100100
Kobonga froggatti	$0001 ? 0000000100100000000000010000120000100100$
Kobonga fuscomarginata	000110010011100000000000000010000120000100100
Kobonga godingi	00011001001110000000 ?0000 00010000120000100100
Kobonga oxleyi	000110010011100000000000000010000120000100100
Kobonga umbrimargo	$0001 ? 0010011100000000000000010000120000100100$
Marteena rubricincta	000100000000000000001000000000000141001101000
Notopsalta atrata	001010100000000000000000110000000120000100100
Notopsalta sericea	000110100000000000000000000000000120000100100
Pauropsalta dubia	001010110200000000000000100000000120000110100
Pauropsalta 'dubia2'	001010110200000000000000100000000120000110100
Pauropsalta nodicosta	$0010111002000100 ? ? 1$? 0000000000000120000110101
Pauropsalta signata	0010101100000100001000000101000000300012 12?1?
Pipilopsalta ceuthoviridis	001010100000000000100000010100000030002100110
Quintilia infans	001000100000000000000000 ? 00000000010000100000
Rhodopsalta cruentata	000110100000000001000000000000000020001100100
Tettigettalna argentata	001010100000000000000000000000000030000102000
Urabunana emma	0010101000000100001001001101000000301012 31?1?
Urabunana festiva	0010101000000100001001000101000000301012 31?1?
Urabunana leichardti	001010100000010000100100110100000030001100110
Urabunana marshalli	0010101000000100001001001101000000301012 31?1?
Urabunana verna	001011100200010000100000000000000110000100101
Urabunana wollomombii	001110100000000000000000110000000120000100100

Results from the analyses found 18 shortest trees of length of 121 , CI 48 and RI 84 . These 18 trees included just two incompatible trees, the others being less resolved versions of one or the other of these two trees. These two incompatible shortest trees differed only in the interchanging of positions of Urabunana leichardti and Pauropsalta signata and it is one of these two trees shown in Fig. 28.

The two incompatible shortest trees supported most previously described genera in monophyletic clades. In addition they supported clusters of species that could be interpreted as potential new genera. Interestingly, a number of species, primarily those currently placed in the genera Cicadetta, Urabunana and Pauropsalta, were scattered widely through the trees between distinctive described genera such as Froggattoides, Urabunana, Gagatopsalta, Caliginopsalta, Rhodopsalta and Kobonga, while others clustered within clades potentially definable as new genera.

Support for nodes forming the basic structure of the tree was weak with only 12 nodes (or 25% of the nodes) supported by a bootstrap value above 70% (Fig. 28). However, some parts of the structure of the tree, and more importantly all its putative generic groupings, were similar to the unpublished results from molecular analyses of these species by Hill, Marshall, Simon, et al. (pers. comm.). Further, some support for the basic structure is suggested by two trends in character transformation through the tree. The first concerns the dorsal beak of the male pygofer. This tends to be strongly developed as a long spine-like structure in those species in clades branching near the base of the tree; further up the tree the dorsal beak tends towards being a pointed apex to the pygofer rather than a spine-like structure and is only absent in the genus Crotopsalta, at the top of the tree. Likewise, an absence of a dorsal beak in the female is found only in species branching at the top of the tree, viz. Crotopsalta species and Drymopsalta crepitum. The second relates to the separation or fusion of fore wing veins M and CuA when they meet the basal cell. They are clearly unfused in Abricta borealis and all species of Diemeniana, the genera that are the sister clades to all other species in the analysis; this condition is plesiomorphic (Moulds 2005a). In three clades near the base of the tree there are some species in which these veins are completely unfused (in Marteena and some individuals of K. froggatti and K. umbrimargo), and some in the same clades where some individuals have these veins almost separated (Cicadetta convergens, C. latorea, C. torrida, Kobonga froggatti and K. umbrimargo). Beyond these basal branchings the fusion of M and CuA is more consolidated with no reversals but for one exception (Quintilia infans) and the length of the fusion tends to be longer. Thus, for the most part, the plesiomorphic condition (unfused veins) resides in clades branching at or near the base of the tree while the apomorphic condition (fused veins) is strongest in the upper clades of the tree.

Selection of generic groupings

The decision for defining the limits of new generic groupings in species with an exposed fleshy endotheca was based upon defined groupings in the cladistic analysis, taking into account the degree of difference between sister clades and identifiable apomorphies (Fig. 28), and keeping in mind that these groupings were also supported in the molecular studies of Hill, Marshall, Simon, et al. New genera are thus defined by the apomorphies in the tree distinguishing their clades, in addition to the absence of apomorphies defining sister clades.

Sixteen of the new genera proposed in the analysis are monotypic but this unusually high number of monotypics is misleading. Collections of cicadas and molecular studies by Hill, Marshall and Simon (pers. comm.) show that only about one third of the Australian cicada fauna is described and the majority of the monotypic genera proposed here are in fact not monotypic. Our current knowledge suggests that, of the genera described here, only Galanga gen. n., Limnopsalta gen. n. and Toxala gen. n. are likely to remain monotypic.

The cladistic analysis shows that the single Australian species currently placed in Notopsalta, N. atrata, is not congeneric with the type species of the genus from New Zealand, but instead groups with six other Australian species clearly separated from true Notopsalta by one synapomorphy and two homoplasious apomorphies; this distinct grouping is here considered to represent the new genus Myopsalta.

The single species of Quintilia and none of the species of Urabunana or Pauropsalta included in the analysis belong to those genera because their type species differ significantly in genitalic and other features. Quintilia infans falls as the sister to the monotypic Caliginopsalta percola but certainly is not congeneric, the two differing by seven apomorphies albeit mostly homoplasious ones; thus Quintilia infans is considered to represent a new monotypic genus Terepsalta. Similarly, generic distinction has been made between Marteena rubricincta and its sister Cicadetta spinosa because they are very different in appearance and one has completely unfused veins M and CuA and the other substantially fused. Cicadetta hackeri and C. stradbrokensis have been treated as monotypic genera

FIGURE 28. a-c. One of the 18 most parsimonious trees derived using the procedure described in the text above (length 121, CI 49, RI 84) from an analysis of 71 species of Cicadettini with an exposed endotheca, employing Gudanga boulayi as the outgroup, with all characters unordered and equally weighted. Names at nodes are those of genera as recognized in this paper. Numbers at nodes are bootstrap values $>50 \%$ from 1000 replications. Character transformations shown at nodes (generated using Clados) include autapomorphies that help define genera: black bars = non-homoplasious forward change; grey bars $=$ homoplasious forward change; white bars $=$ reversal (whether homoplasious or not).
because they differ in three significant apomorphies and no synapomorphy could be found to place them together or with another clade. Cicadetta sancta, C. puer and C. hermannsburgensis are also distinctive in overall appearance (Pls 1 and 2) and are placed as monotypic genera. The selection of other generic groupings was dictated by the degree of similarity of their members and degree of difference from adjoining clades, the latter sometimes being previously described genera with distinctive features.

Summary of classification for Australian Cicadoidea

The following list uses the higher classification proposed by Moulds (2005a) and the amended arrangement of the tribe Cicadini proposed by Lee (2008) and Lee and Hill (2010).

Family TETTIGARCTIDAE Distant, 1905
Subfamily TETTIGARCTINAE Distant, 1905
Tribe TETTIGARCTINI Distant, 1905
Tettigarcta White, 1845
crinita Distant, 1883
tomentosa White, 1845

Family CICADIDAE Latreille, 1802
Subfamily CICADINAE Latreille, 1802
Tribe PLATYPLEURINI Schmidt, 1918
Oxypleura Amyot \& Serville, 1843
calypso (Kirby, 1889)
Tribe TALCOPSALTRIINI Moulds, 2008
Talcopsaltria Moulds, 2008
olivei Moulds, 2008

Tribe THOPHINI Distant, 1904
Thopha Amyot and Serville, 1843
colorata Distant, 1907
emmotti Moulds, 2000
hutchinsoni Moulds, 2008
saccata (Fabricius, 1803)
sessiliba Distant, 1892
Arunta Distant, 1904
interclusa (Walker, 1858)
perulata (Guérin-Méneville, 1831)

Tribe CRYPTOTYMPANINI Handlirsch, 1925
Anapsaltoda Ashton, 1921
pulchra (Ashton, 1921)
Neopsaltoda Distant, 1910
crassa Distant, 1910
Psaltoda Stål, 1861
adonis Ashton, 1914
antennetta Moulds, 2002
aurora Distant, 1881
brachypennis Moss \& Moulds, 2000
claripennis Ashton, 1921
flavescens Distant, 1892
fumipennis Ashton, 1912
harrisii (Leach, 1814)
insularis Ashton, 1914
maccallumi Moulds, 2002
magnifica Moulds, 1984
moerens (Germar, 1834)
mossi Moulds, 2002
pictibasis (Walker, 1858)
plaga (Walker, 1850)
Macrotristria Stål, 1870
angularis (Germar, 1834)
bindalia Burns, 1964
doddi Ashton, 1912
dorsalis Ashton, 1912
douglasi Burns, 1964
extrema (Distant, 1892)
frenchi (Distant, 1892)
godingi Distant, 1907
hieroglyphicalis (Kirkaldy, 1909)
intersecta (Walker, 1850)
kabikabia Burns, 1964
kulungura Burns, 1964
lachlani Moulds, 1992
maculicollis Ashton, 1914
sylvara (Distant, 1901)
thophoides Ashton, 1914
vittata Moulds, 1992
worora Burns, 1964
Illyria Moulds, 1985
australensis (Kirkaldy, 1909)
burkei (Goding \& Froggatt, 1904)
hilli (Ashton, 1921)
major Moulds, 1985
Arenopsaltria Ashton, 1921
fullo (Walker, 1850)
nubivena (Walker, 1858)
pygmaea (Distant, 1904)
Henicopsaltria Stål, 1866
danielsi Moulds, 1993
eydouxii (Guérin-Méneville, 1838)
kelsalli Distant, 1910
rufivelum Moulds, 1978
Tribe CYCLOCHILINI Distant, 1904
Cyclochila Amyot \& Serville, 1843
australasiae (Donovan, 1805)
virens Distant, 1906
Tribe CICADINI Latreille, 1802
Subtribe COSMOPSALTRIINA Kato, 1932
Diceropyga Stål, 1870
subapicalis (Walker, 1868)
Tribe TAMASINI Moulds, 2005
Tamasa Distant, 1905
burgessi (Distant, 1905), comb. n.
doddi (Goding \& Froggatt, 1904)
rainbowi Ashton, 1912
tristigma (Germar, 1834)
Parnkalla Distant, 1905
muelleri (Distant, 1882)
Parnquila gen. n.
hillieri Distant, 1906, comb. n. (nec hillieri Distant, 1907)
magna (Distant, 1913), comb. n.
venosa Distant, 1907, comb. n.
unicolor (Ashton, 1921), comb. n.
Tribe BURBUNGINI Moulds, 2005
Burbunga Distant, 1905
albofasciata Distant, 1907
aterrima (Distant, 1914)
gilmorei (Distant, 1882)
hillieri (Distant, 1907), comb. n. (nec hillieri Distant, 1906)
inornata Distant, 1905
nanda (Burns, 1964), comb. n.
nigrosignata (Distant 1904), comb. n.
occidentalis (Distant, 1912), comb. n.
parva Moulds, 1994
queenslandica Moulds, 1994
Tribe JASSOPSALTRIINI Moulds, 2005
Jassopsaltria Ashton, 1914
rufifacies Ashton, 1914

Subfamily CICADETTINAE Buckton, 1889
Tribe TAPHURINI Distant, 1905
Subtribe TRYELLINA Moulds, 2005
Aleeta Moulds, 2003
curvicosta (Germar, 1834)
Tryella Moulds, 2003
adela Moulds, 2003
burnsi Moulds, 2003
castanea (Distant, 1905)
crassa Moulds, 2003
graminea Moulds, 2003
infuscata Moulds, 2003
kauma Moulds, 2003
lachlani Moulds, 2003
noctua (Distant, 1913)
occidens Moulds, 2003
ochra Moulds, 2003
rubra (Goding \& Froggatt, 1904)
stalkeri (Distant, 1907)
willsi (Distant, 1882)
Chrysocicada Boulard, 1989
franceaustralae Boulard, 1989
Pictila gen. n.
occidentalis (Goding \& Froggatt, 1904), comb. n.

Tribe PRASIINI Matsumura, 1917
Lembeja Distant, 1883
paradoxa (Karsch, 1890)
vitticollis (Ashton, 1912)

Tribe CICADETTINI Buckton, 1889
Samaecicada Popple and Emery, 2010
subolivacea (Ashton, 1912)
Gudanga Distant, 1905
adamsi Moulds, 1996
aurea Moulds, 1996
boulayi Distant, 1905
browni (Distant, 1913)
kalgoorliensis Moulds, 1996
pterolongata Olive, 2007
solata Moulds, 1996
Adelia gen. n.
borealis (Goding \& Froggatt, 1904), comb. n.
Diemeniana Distant, 1905
cincta (Fabricius, 1803) comb. n.
euronotiana (Kirkaldy, 1909)
frenchi (Distant, 1907)
hirsuta (Goding and Froggatt, 1904)
neboissi Burns, 1958
Uradolichos gen. n.
longipennis (Ashton, 1914), comb. n.
Pauropsalta Goding \& Froggatt, 1904
aktites Ewart, 1989
annulata Goding \& Froggatt, 1904
aquila Ewart, 1989
ayrensis Ewart, 1989
borealis Goding \& Froggatt, 1904
collina Ewart, 1989
corticina Ewart, 1989
dolens (Walker, 1850)
elgneri (Ashton, 1912)
encaustica (Germar, 1834)
extensa Goding and Froggatt, 1904
extrema (Distant, 1892)
fuscata Ewart, 1989
infrasila Moulds, 1987
infuscata (Goding \& Froggatt, 1904)
melanopygia (Germar, 1834)
тпете (Walker, 1850)
nigristriga Goding \& Froggatt, 1904
opaca Ewart, 1989
prolongata Goding \& Froggatt, 1904
rubea (Goding \& Froggatt, 1904)
rubra Goding \& Froggatt, 1904
rubristrigata (Goding \& Froggatt, 1904)
siccana Ewart, 1989
stigmatica Distant, 1905
walkeri Moulds \& Owen, 2011
Graminitigrina Ewart \& Marques, 2008
bolloni Ewart \& Marques, 2008
bowensis Ewart \& Marques, 2008
carnarvonensis Ewart \& Marques, 2008
karumbae Ewart \& Marques, 2008
triodiae Ewart \& Marques, 2008
Palapsalta gen. n.
circumdata (Walker, 1852), comb. n.
eyrei (Distant, 1882), comb. n.
virgulatus Ewart, 1989, comb. n.
vitellinus (Ewart, 1989), comb. n.
Nanopsalta gen. n.
basalis (Goding \& Froggatt, 1904), comb.n.
Punia gen. n.
minima (Goding \& Froggatt, 1904), comb.n.
Neopunia gen. n.
graminis (Goding \& Froggatt, 1904), comb.n.
Kikihia Dugdale, 1972
convicta (Distant, 1892)
Marteena Moulds, 1986
rubricincta (Goding \& Froggatt, 1904)

Auscala gen. n.
spinosa (Goding \& Froggatt, 1904), comb. n.
Birrima Distant, 1906
castanea (Goding \& Froggatt, 1904)
varians (Germar, 1834)
Yoyetta gen. n.
aaede (Walker, 1850), comb. n.
abdominalis (Distant, 1892), comb. n.
celis (Moulds, 1988), comb. n.
denisoni (Distant, 1893), comb. n.
hunterorum (Moulds, 1988), comb. n.
incepta (Walker, 1850), comb. n.
landsboroughi (Distant, 1882), comb. n.
toowoombae (Distant, 1915), stat.rev., comb. n.
tristrigata (Goding \& Froggatt, 1904), comb. n.
Taurella gen. n.
forresti (Distant, 1882), comb. n.
froggatti (Distant, 1907), comb. n.
viridis (Ashton, 1912), comb. n.
Urabunana Distant, 1905
sericeivitta (Walker, 1862)
Sylphoides gen. n.
arenaria (Distant, 1907), comb. n.
Pyropsalta gen. n.
melete (Walker, 1850), comb. n.
Physeema gen. n.
bellatrix (Ashton, 1914), comb. n.
convergens (Walker, 1850), comb. n.
labyrinthica (Walker, 1850), comb. n.
latorea (Walker, 1850), comb. n.
quadricincta (Walker, 1850), comb. n.
Gelidea gen. n.
torrida (Erichson, 1842), comb. n.
Clinopsalta gen. n.
adelaida (Ashton, 1914), comb. n. tigris (Ashton, 1914), comb. n.
Galanga gen. n.
labeculata (Distant, 1892), comb. n.
Kobonga Distant, 1906
apicans Moulds \& Kopestonsky, 2001
apicata (Ashton, 1914), comb. n.
froggatti Distant, 1913
fuscomarginata (Distant, 1914)
godingi (Distant, 1905)
oxleyi (Distant, 1882)
umbrimargo (Walker, 1858)
Plerapsalta gen. n.
incipiens (Walker, 1850), comb. n.
multifascia (Walker, 1850), comb. n.
Caliginopsalta Ewart, 2005
percola Ewart, 2005
Terepsalta gen. n.
infans (Walker, 1850), comb. n.

Telmapsalta gen. n.
hackeri (Distant, 1915), comb. n.
Limnopsalta gen. n.
stradbrokensis (Distant, 1915), comb. n.
Heliopsalta gen. n.
polita Popple, 2003, comb. n.
Gagatopsalta Ewart, 2005
auranti Ewart, 2005
obscura Ewart, 2005
Simona gen. n.
sancta (Distant, 1913), comb. n.
Chelapsalta gen. n.
puer (Walker, 1850), comb. n.
Erempsalta gen. n.
hermannsburgensis (Distant, 1907), comb. n.
Pipilopsalta Ewart, 2005
ceuthoviridis Ewart, 2005
Dipsopsalta gen. n. signata (Distant, 1914), comb. n.
Paradina gen. n.
leichardti (Distant, 1882), comb. n.
Mugadina gen. n.
emma (Goding \& Froggatt), comb. n.
festiva (Distant, 1907), comb. n.
marshalli (Distant, 1911), comb. n.
Myopsalta gen. n.
atrata (Goding \& Froggatt, 1904), comb. \mathbf{n}.
binotata (Goding \& Froggatt, 1904), comb. n.
crucifera (Ashton, 1912), comb. n.
lactea (Distant, 1905), comb. n.
mackinlayi (Distant, 1882), comb. n.
waterhousei (Distant, 1905), comb. n.
wollomombii (Coombs, 1995), comb. n.
Noongara gen. n.
issoides (Distant, 1905), comb. n.
Froggattoides Distant, 1910
pallidus (Ashton, 1912)
typicus Distant, 1910
Clinata gen. \mathbf{n}.
nodicosta (Goding \& Froggatt, 1904), comb. n.
Toxala gen. n.
verna (Distant, 1912c), comb. n.
Platypsalta gen. n.
dubia (Goding \& Froggatt, 1904),
comb. n.
mixta (Distant, 1914), comb. n.
Drymopsalta Ewart, 2005
crepitum Ewart, 2005
daemeli (Distant, 1905)
Crotopsalta Ewart, 2005
fronsecetes Ewart, 2005
leptotigris Ewart, 2009
plexis Ewart, 2005 varicolor (Distant, 1907)
poaecetes Ewart, 2005
strenulum Ewart, 2005

Ewartia gen. n.
brevis (Ashton, 1912), comb. n.
cuensis (Distant, 1913), comb. n.
oldfieldi (Distant, 1883), comb. n.

Tribe CHLOROCYSTINI Distant, 1905
Venustria Goding \& Froggatt, 1904 superba Goding and Froggatt, 1904
Guineapsaltria de Boer, 1993
flava (Goding and Froggatt), 1904
Gymnotympana Stål, 1861
rufa (Ashton, 1914)

Owra Ashton, 1912
insignis Ashton, 1912
Chlorocysta Westwood, 1851
fumea (Ashton, 1914)
suffusa (Distant, 1907)
vitripennis (Westwood, 1851)
Glaucopsaltria Goding \& Froggatt, 1904
viridis Goding \& Froggatt, 1904
Thaumastopsaltria Kirkaldy, 1900
globosa (Distant, 1897)
Cystosoma Westwood, 1842
saundersii Westwood, 1842
schmeltzi, Distant, 1882
Cystopsaltria Goding \& Froggatt, 1904
immaculata Goding \& Froggatt, 1904

KEY TO FAMILIES AND SUBFAMILIES OF CICADOIDEA

Modified from Moulds (2005a). Some characters used in the key were selected because they seemed the best for separating taxa; not because they necessarily defined monophyletic groups. Thus, subfamily Cicadinae falls out in two locations within the key.

1. Pronotum greatly expanded and concealing majority of mesonotum family TETTIGARCTIDAE

- Pronotum not expanded over mesonotum, much smaller than mesonotum family CICADIDAE . . . 2

2. Fore wing veins CuP and 1 A fused; hind wing veins RP and M fused at their bases 3

- Fore wing veins CuP and 1A unfused; hind wing veins RP and M unfused at their bases
subfamily TETTIGADINAE (not present in Australia)

3. Metanotum entirely concealed at dorsal midline; males usually (but not always) with obvious timbal covers

- Metanotum partly visible at dorsal midline; males without obvious timbal covers

4. Hind wing 1st cubital cell width at distal end much greater than 2 nd cubital cell (twice or more)
. subfamily CICADETTINAE

- Hind wing 1 st cubital cell width at distal end about equal to 2 nd cubital cell subfamily CICADINAE

KEY TO TRIBES OF AUSTRALIAN CICADINAE

Modified from Moulds (2008a). Some characters used here for distinguishing Australian tribes may not be applicable to some non-Australian species belonging to these tribes. Some characters used in the key were selected because they seemed the best for separating taxa; not because they necessarily defined monophyletic groups.

1. Head with vertex very wide so that supra-antennal plate clearly reaches less than half way to eye . 2

- Head with vertex of average width or narrow so that the supra-antennal plate reaches at least half way to eye 7

2. Epimeral lobe not reaching operculum . Burbungini

- Epimeral lobe reaching operculum . 3

3. Fore leg femoral primary spine lying flat, prostrate . 4

- Fore leg femoral primary spine erect . 5

4. Paranotum (lateral margin of pronotal collar) dilated horizontally; male timbal cover reaching, or almost reaching, metathorax
. Platypleurini

- Paranotum not dilated horizontally; male timbal cover only reaching about half way to metathorax Talcopsaltriini

5. Male 6
Female Cryptotympanini or Thophini
6. Timbal covers flat Cryptotympanini

- Timbal covers inflated, sac-like Thophini

7. Pronotal collar with a single mid-lateral tooth; male opercula (of Australian species) very long, covering some $2 / 3$ length of
abdomenTribe Cicadini, subtribe Cosmopsaltriina

- Pronotal collar with lateral margin (paranotum) smooth; male opercula extending no further than distal margin of tympanal
cavity 8

8. Head considerably less than width of pronotum; fore wing veins C and $R+S c$ widely separated Cyclochilini

- Head about as wide as pronotum; fore wing veins C and $\mathrm{R}+\mathrm{Sc}$ abutted for their length 9

9. Lateral ocelli widely separated, the distance between them about equal to the distance between each lateral ocellus and eye . .
Jassopsaltriini

- Lateral ocelli closely spaced, the distance between them considerably less than the distance between each lateral ocellus andeye10

10. Distance between eyes less than distance between paramedian fissures of pronotum Tamasini

- Distance between eyes greater than distance between paramedian fissures of pronotum Burbungini
KEY TO THE TRIBES OF AUSTRALIAN CICADETTINAE
Adopted from Moulds (2005a). Some characters used here for distinguishing Australian tribes may not be applicable to some non-Australian species belonging to these tribes.

1. Fore wing veins M and CuA meeting the basal cells with their stems confluent Cicadettini

- Fore wing veins M and CuA meeting the basal cell clearly separated 2

2. Fore wing with 9 or more apical cells 3

- Fore wing with 8 apical cells 4

3. Head narrower than maximum width of pronotum Chlorocystini

- Head wider than maximum width of pronotum Taphurini, subtribe Tryellina

4. Fore wing costa broadest near node Chlorocystini

- Fore wing costa not broadest near node, tending to be parallel-sided 5

5. Hind wing veins CuP and 1 A fused in part Prasiini
Hind wing veins CuP and 1A unfused 6
6. Male 7

- Female Cicadettini or Taphurini, subtribe Tryellina

7. Opercula within confines of tympanal cavity Cicadettini

KEY TO GENERA OF AUSTRALIAN CICADOIDEA

PLEASE NOTE: A number of features used in this key are not clearly visible to the naked eye and examination of specimens at magnification is recommended. Specimens are best viewed with the wings spread and when there is a choice between sexes it is usually best to use a male because identification of females often requires additional steps. This key is designed to provide identification to genus for all described Australian species; it may not work for undescribed species and it is recommended that identifications obtain from this key be verified using the generic descriptions and figures below.

Although the key appears long most specimens will key out in less than 12 steps. The key is constructed as a practical means of identification and does not necessarily use true generic characters or reflect phylogenetic relationships. It attempts to include all variant specimens. Wherever possible external features have been used, including colour, but in a few cases it has been necessary to use male genitalic features requiring dissection. Species are identified directly to genus, avoiding the need for keys to tribes.

1. Pronotum greatly expanded and concealing most of mesonotum (Fig. 29) (family Tettigarctidae) Tettigarcta

- Pronotum not expanded over mesonotum, much smaller than mesonotum (Fig. 30) (family Cicadidae) 2

2. Metanotum partly visible (as a ridged structure) at dorsal midline (Fig. 31) (includes most small cicadas; subfamily Cicadettinae) .45

- Metanotum concealed on dorsal midline (Fig. 32) (includes most large cicadas; subfamily Cicadinae) 3

3. Distance between eyes clearly greater than distance between lateral fissures of pronotum (Fig. 33) 4

- Distance between eyes not wider than distance between lateral fissures of pronotum (Fig. 34) . 20

4. Male. . .. 5

- Female.. 12

5. Timbal covers greatly swollen, sac-like . Thopha

- Timbal covers flat, nearly confluent with abdomen . 6

6. Operculum with distal margin evenly rounded in an arc (Fig. 35) . 7

- Operculum angular, the lateral and distal margins both nearly straight (Fig. 36) . 11

7. Viewed ventrally, supra-antennal plate curved under head so that rim is clearly positioned on ventral side of head 10

- Viewed ventrally, supra-antennal plate is not curved under head so that rim is always aligned with anterior margin of vertex . .

8. Pronotal collar very broad, nearly as wide as diameter of eyes, and well developed laterally Macrotristria

- Pronotal collar nowhere near as wide as diameter of eyes and very narrow laterally . 9

9. Timbal covers well developed and completely concealing timbals . Arenopsaltria

- Timbal covers reduced and clearly exposing part of timbals . Burbunga

10. Hind wing anal lobe entirely and boldly suffused orange (indistinct if wings are folded)apsaltoda

- Hind wing anal lobe substantially hyaline or if hints of orange then very weak . Macrotristria

11. Tergites 2 and 3 highly modified, enlarged and comprising some $2 / 3$ of abdominal length (Fig. 37). . . Neopsaltoda (N. crassa)

- Tergites 2 and 3 enlarged but forming only about half abdominal length (Fig. 38) . Psaltoda

12. Hind wing with a distinct infuscation along part of ambient vein, usually most pronounced in apical region 13

- Hind wing lacking infuscation on ambient vein . 15

13. Pronotal collar with lateral part possessing a narrowed anterior extension . Macrotristria

- Pronotal collar with lateral part engulfed by the rounded lateral angles so that there is no narrow anterior extension 14

14. Hind wing anal lobe entirely and boldly suffused orange (indistinct if wings are folded) Anapsaltoda

- Hind wing anal lobe substantially hyaline or if hints of orange then very weak . Psaltoda

15. Fore wing median veins with infuscation, often as a row of spots one per vein 16

- Fore wing median veins lacking infuscation . .. 17

16. Pronotal collar very broad, nearly as wide as diameter of eyes, and well developed laterally Macrotristria

- Pronotal collar nowhere near as wide as diameter of eyes and very narrow laterally . Arenopsaltria

- Fore wing basal cell never entirely black . 18

18. Abdominal segment 8 in dorsal view clearly distinguished by a covering of white (powder-like) or silver pubescence

- Abdominal segment 8 not distinguished by such pubescence . 19

19. Pronotal collar with lateral parts possessing a narrowed anterior extension.

- Pronotal collar with lateral parts engulfed by the rounded lateral angles so that there is no narrow anterior extension
Neopsaltoda (McIlwraith Rg only) or Psaltoda

20. Fore wing basal cell broad and about as wide as long or just a little elongate (Fig. 39); basal cell opaque along anterior marginor more extensively21

- Fore wing basal cell slender, clearly longer than wide (Fig. 40); basal cell largely translucent, never partly opaque 40

21. Fore wing costal veins C and $\mathrm{R}+\mathrm{Sc}$ widely separated, the area between them entirely flat (Fig. 39); pronotal collar exceedinglybroad including lateral marginsCyclochila

- \quad C and $\mathrm{R}+\mathrm{Sc}$ adjacent with no flat area between (Fig. 40); pronotal collar never exceedingly broad both dorsally and laterally . .22

22. Fore leg femoral primary spine lying flat against femur, prostrate (Fig. 48) 23

- \quad Fore leg femoral primary spine erect (Fig. 47) 25

23. Paranota (lateral margins of pronotal collar) very ampliate, shelf-like (Fig. 44) (a species confined to Christmas Island)Oxypleura (O. calypso)

- Paranota ampliate but much reduced and almost confluent with pronotum 24

24. Paranotum (lateral margin of pronotal collar) bearing many very small spine-like bristles (clearly visible at x10 magnification)
Talcopsaltria (T. olivei, Pl. 1)

- Paranotum lacking spine-like bristles Burbunga

25. Paranotum (lateral margin of pronotal collar) finely serrate (Fig. 41) 26

- Paranotum smooth (Fig. 42) 27

26. Fore wing less than 35 mm in length; male timbal covers substantially overlap the opercula Arenopsaltria

- Fore wing greater than 35 mm in length; male timbal covers often meet but never overlap the opercula Henicopsaltria

27. Postclypeus anterior profile in dorsal view nearly straight giving the head a very blunt appearance (Fig. 45); male timbal cov-ers greatly swollen, sac-likePostclypeus anterior profile in dorsal view well rounded giving the head an angular appearance (Fig. 41); male timbal coversflat, nearly confluent with abdomen28
28. Viewed ventrally, supra-antennal plate curved under head so that rim is clearly positioned on ventral side of head 29

- Viewed ventrally, supra-antennal plate is not curved under head so that rim is always aligned with anterior margin of vertex30

29. Pronotal collar across dorsal region narrow, very much narrower than diameter of eye Henicopsaltria- Pronotal collar across dorsal region wide, about as wide or wider than diameter of eye Macrotristria
30. Thorax above black or almost so, without distinct markings Burbunga- Thorax not coloured as above, if dark then with some obvious markings
31. Fore wings with infuscations

- Fore wings lacking infuscations 3231

32. Distance between supra-antennal plate and eye (in dorsal view), about equal to length of antennal plate (Fig. 46) 33

- Distance between supra-antennal plate and eye (in dorsal view), clearly greater than length of antennal plate (Fig. 51) 37

33. Male pygofer with no median dorsal beak (or a very small one) set between protruding distal shoulders (Fig. 49); female withampliate costal margin (shelf-like anterior expansion) clearly its widest in vicinity of basal cell Illyria

- Male pygofer with a median dorsal beak that is exposed and the most distal part of pygofer (Fig. 50); female with ampliate cos-tal margin no wider in vicinity of basal cell than elsewhere34

34. Rostrum exceedingly long, extending way beyond distal ends of hind coxae 35

- Rostrum much shorter, reaching no further than about bases of hind coxae 36

35. Large cicadas with fore wing length 35 mm or more Henicopsaltria

- Medium size cicadas with fore wing length no more than 30 mm Parnquila gen. n. (P. unicolor)

36. Distance between lateral ocelli about equal to distance from lateral ocellus to eye Parnquila gen. n.Distance between lateral ocelli much less than distance from lateral ocellus to eyeBurbunga (B. albofasciata)

FIGURES 29-40. Diagrams accompanying key to genera: (29-30) head and body, dorsal view with pronotum highlighted black; (31-32) head and thorax, dorsal view with metanotum highlighted black; (33-34) head and pronotum, dorsal view with pronotal fissures indicated; (35-36) posterior of male thorax plus abdomen, ventral view; (37-38) male head and abdomen, dorsal view with abdominal tergites 2 and 3 highlighted black; (39-40) right fore wing.
37. Fore wing less than 35 mm in length; male timbal covers substantially overlap the opercula . Arenopsaltria

- Fore wing greater than 35 mm in length; male timbal covers often meet but never overlap the opercula

38. Rostrum exceedingly long, extending far beyond apices of hind coxae 39

- Rostrum shorter, reaching no further than apices of hind coxae Burbunga

39. Thorax mid brown and boldly patterned with jet black fascia Henicopsaltria

- Thorax very dark reddish brown and largely unmarked Burbunga
40 (20). Paranotum (lateral margin of pronotal collar) with a small tooth near mid point Diceropyga (D. subapicalis)
- Paranotum lacking such a tooth 41

41. Distance between all three ocelli about equal (Fig. 52) 42

- Distance between the lateral ocelli much greater than distance between anterior ocellus and each lateral ocellus (Fig. 53) 44

42. Paranota (lateral margins of pronotal collar) ampliate (Fig. 57) . Tamasa

- Paranota virtually confluent with surface of pronotum (Fig. 58) 43

43. Fore wing length less than 20 mm ; male timbal covers undeveloped, apparently absent Parnkalla (P. muelleri)Parnquila gen. n.
44. Fore wing with infuscations (P. magna, Pl. 1)

- Fore wing entirely without infuscation Jassopsaltria
45(2). Fore wing veins M and CuA meeting basal cell independently, usually clearly separated (Fig. 59) but sometimes abutted (Fig.60) (if one wing has these veins completely fused as one but the other not, then treat as unfused)46
- Fore wing veins M and CuA with their stems fused as one before meeting basal cell (check under magnification, sometimesabutted veins can look fused to naked eye) (Fig. 61)80

46. Fore wing with 8 apical cells (Fig. 62) 54

- Fore wing with 9 or more apical cells (Fig. 63) (if one wing has 8 and the other 9 , then treat as having 8, not 9) 47

47. Fore wing ulnar cell 3 substantially parallel to radial cell (Fig. 63) 48

- Fore wing ulnar cell 3 substantially angled to radial cell (Fig. 61) 53

48. Fore wing with a single row of subapical cells (Fig. 63) 49

- Fore wing with no subapical cells (Fig. 61) or many subapical cells (Figs 67, 68) 51

49. Fore wing with 10 apical cells (sometimes 9 or 11 if aberrant, but usually so only in 1 wing); 4 or 5 subapical cells (Fig. 63) . .- Fore wing with 12 or more apical cells (sometimes 11 if aberrant, but usually so only in 1 wing); 6 or more subapical cells (Fig.64)50
50. Male tergite 7 clearly larger than others, its dorsal midline much greater in length (Fig. 65); female normally with 13 apical cells in fore wing and 6 apical cells in hind wing (aberrant specimens can have one more or one less in either but usually only in one wing)
.Glaucopsaltria (G. viridis)

- Male tergite 7 similar in size to others (Fig. 66); female normally with 12 apical cells in fore wing and 5 apical cells in hind wing (aberrant specimens can have one more or one less in either but usually so only in one wing)
Chlorocysta
51(48). Fore wing hyaline
Thaumastopsaltria (T. globosa)
- Fore wing entirely opaque and coloured green, orange or turquoise

52. Fore wing with majority of marginal cells long and slender, at least three times longer than wide (Fig. 67) Cystopsaltria

- Fore wing with only a few marginal cells reaching three times longer than wide, majority much less (Fig. 68) Cystosoma
53(47). Fore wing veins M and CuA meeting basal cell wide apart (Fig. 69); fore wing normally with 10 apical cells (9 or 11 if aberrant but usually so only in one wing) (Fig. 69)
Pictila gen. n. (P. occidentalis, Pl. 1)
- Fore wing veins M and CuA meeting basal cell abutted or nearly so (Fig. 70); fore wing with 9 apical cells (Fig. 70)

Venustria (V. superba)

FIGURES 41-56. Diagrams accompanying key to genera: (41-46, 51-54) head or head plus pronotum, dorsal view; (47-48) fore femur; (49-50) male pygofer, dorso-lateral view; (55-56) right timbal (anterior to right).
54(46). Fore wing with sclerotized area (shelf-like) anterior to costal vein very wide, the maximum width at least as wide as costal vein(Fig. 71)55

- Fore wing with sclerotized area (shelf-like) anterior to costal vein either clearly less than width of costal vein (Fig. 74) orabsent (Fig. 72)56

55. Fore wing rarely shorter than 32 mm long, often above 40 mm ; male genitalia with uncal lobes downturned at their distal ends
Aleeta (A. curvicosta)- Fore wing never as long as 32 mm , usually under 26 mm ; uncal lobes upturned at their distal endsTryella
56. Head, thorax and abdomen green (sometimes red), virtually without markings 57

- Head, thorax and abdomen never all green (or red) 63

57. Fore wing costa broadest near node (Fig. 72); fore wing margin narrow or absent (Fig. 72) 59

- Fore wing costa not broadest near node, tending to be parallel-sided (Fig. 73); fore wing margin broad (Fig. 73) 58

58. Fore wing apical cells similar in length to ulnar cells . Erempsalta gen n.

- Fore wing apical cells all very much shorter than any ulnar cell (Fig. 73) Chrysocicada (C. franceaustralae, Pl. 1)

59. Fore wing costa red Gymnotympana

- Fore wing costa green or yellowish green 60

60. Male 61

- Female 62

61. Abdomen entirely green, yellow or orange below Guineapsaltria (G. flava)- Abdomen partly or entirely red below. Gymnotympana
62. Hind wing apical cell 1 with its distal end as long as, or almost as long as, apical cell 2 (Fig. 77) . . . Guineapsaltria (G. flava)- \quad Hind wing apical cell 1 with its distal end clearly shorter than end of apical cell 2 (Fig. 78) .
Gymnotympana
63(56). Fore wing appearing like a dead leaf, light brown or rusty brown in colour
Lembeja- Fore wing hyaline (sometimes with infuscations) OR entirely suffused with black or brownish black
63. Fore wing with infuscation highlight overlaying veins at distal ends of ulnar cells 1 and 2 (not to be confused with darkenededges that follow all veins of the fore wing) (Fig. 74)65

- Fore wing veins lacking infuscation highlight at distal ends of ulnar cells 1 and 2 72

65. Fore wing with infuscations confined to distal ends of ulnar cells 1 and 2 (Fig. 74) 66

- Fore wing with infuscation also elsewhere, e.g. along ambient vein or at bases of ulnar cells 2 or 3 (Fig. 76) 70

66. Head, thorax and abdomen light brown, virtually without markings Erempsalta gen. n.- Head, thorax and abdomen usually dominantly black, sometimes brown but if so then with jet black markings on abdomen ...6767. Fore wing vein CuA strongly bowed forwards and substantially narrowing ulnar cell 4; leading edge of costal margin markedlystepped near node (Fig. 75)Adelia gen. n. (A. borealis, Pl. 1)- Fore wing vein CuA nearly straight and not encroaching on ulnar cell 4; curve of leading edge of costal margin uninterrupted(Fig. 74) .68
67. Hind wing marginal area clearly wider than fore wing marginal area; male with a very broad abdomen that is much wider than
thorax .- Hind wing marginal area similar in width to fore wing marginal area; male abdomen about as wide as thorax69
68. Hind wing plaga white or nearly so; postclypeus in lateral profile angular at most anterior part . Gelidea gen. n. (G. torrida)- Hind wing plaga grey, brown or black; postclypeus in lateral profile rounded at most anterior partDiemeniana
69. Fore wing with infuscation along ambient vein (Fig. 76) 71

- Fore wing lacking infuscation on ambient vein Noongara gen. n. (N. issoides, Pl. 2)

71. Male abdomen about as wide as thorax; female ovipositor terminating level with end of abdomen (Fig. 103) Kobonga

- Male abdomen much wider than thorax; female ovipositor extending beyond end of abdomen (Fig. 104) ..Mugadina gen. n .

FIGURES 57-66. Diagrams accompanying key to genera: (57-58) head and thorax, dorsal view; (59-64) right fore wing; (65-66) head and body, lateral view with abdominal tergite 7 highlighted black.
72(64). Fore wing nearly opaque, substantially black or brown all over Gudanga

- Fore wing hyaline, sometimes weakly tinted 73

73. Hind wing anal lobe narrow, no wider than the maximum width of cubital cells cuc1 + cuc2 (Fig. 79) 74

- \quad Hind wing anal lobe broad, clearly wider than the maximum width of cuc1 + cuc2 (Fig. 80) 75

74. Hind wing apical cell 1 very small, much smaller than any other apical cell Terepsalta gen. n. (T. infans, Pl. 2)

- Hind wing apical cell 1 large, clearly not the smallest apical cell Uradolichos gen. n. (U. longipenns, Pl. 2)

75. Fore wing veins M and CuA widely separate when meeting basal cell (Fig. 81) Marteena (M. rubricincta)

- Fore wing veins M and CuA abutted or nearly so for a portion of their length before meeting basal cell (Fig. 82) 76

76. Hind wing with a small infuscation at distal end of vein 2A that extends onto wing margin (Fig. 83) Pauropsalta

- \quad Hind wing lacking infuscation at distal end of vein 2A (Fig. 84) 77

77. A small cicada with fore wing less than 20 mm in length 78

- A much larger cicada with fore wing greater than 25 mm in length 79

78. Hind wing marginal area wide, clearly wider than fore wing marginal area; male with a very broad abdomen that is much wider than thorax (about 1.4 x wider) Mugadina gen. n.
Hind wing marginal area similar in width to fore wing marginal area; male abdomen about as wide as thoraxSylphoides gen. n. (S. arenaria)
79. Primarily a tan coloured cicada Venustria (V. superba)

- Primarily a black coloured cicada . Yoyetta gen. n.
$80(45)$. Hind wing with 3,4 or 5 apical cells (Fig. 83) 81
- Hind wing with 6 or more apical cells (if one hind wing has 6 and the other 5, then treat as having 5, not 6) (Fig. 84) 117

81. Hind wing with an infuscation at distal end of vein 2 A that extends onto wing margin (Fig. 83) 82

- \quad Hind wing lacking infuscations at distal end of vein 2A (Fig. 84) 87

82. Male 83

- Female 85

83. Upper pygofer lobe bifurcate, the lower portion tooth-like and sharply pointed (Fig. 87) Nanopsalta gen. n. (N. basalis)- Upper pygofer lobe undivided, large and flat (Fig. 88)84
84. Abdomen broad, at its widest point much wider than lateral angles of pronotum Graminitigrina- Abdomen of more usual width, narrower than lateral angles of pronotumPauropsalta
85. Supra-antennal plate orange (viewed under magnification, approximately x 12), the orange touching postclypeus and fore wingbasal membrane orangeNanopsalta gen. n. (N. basalis)

- \quad Supra-antennal plate usually not orange and usually not touching postclypeus but if orange and if orange touching postclypeusthen fore wing basal membrane black86

86. Apex of dorsal beak not the most distal part of pygofer Pauropsalta- Apex of dorsal beak the most distal part of pygofer
87(81). Fore wing costal vein a little thicker approaching node or before node, not parallel-sided (Figs 85, 86) 88

- \quad Fore wing costal vein parallel-sided to node (Figs 81, 82) 104

88. Fore wing with fused stem of veins M and CuA short, less than length of long side of basal cell (Fig. 95) 89

- Fore wing with fused stem of veins M and CuA long, equal to or greater than length of long side of basal cell (Fig. 96) 92

89. Fore wing costal vein (C) markedly swollen proximal to node, distorting the even curvature of the costal margin (Fig. 85) ...
Clinata gen. n. (C. nodicosta, Pl. 2)

- Fore wing costal vein gradually thickening towards node so that costal margin curves gradually (Fig. 95) 90

90. Fore wing radial cell clearly shorter than the distance from its apex to wing tip (Fig. 61) 91

- Fore wing radial cell very long, about equal to or longer than distance from its apex to wing tip
Neopunia gen. n. (N. graminis, P1. 2)

91. Distance between median ocellus and lateral ocellus about equal to or less than diameter of ocellus

Punia gen. n.

- Distance between median ocellus and lateral ocellus much greater than diameter of ocellus Mugadina gen. n.

FIGURES 67-76. Diagrams accompanying key to genera: (67-76) right fore wing.
92(88). Fore wing costa clearly bowed (Fig. 86) 93

- Fore wing costa barely curved, nearly straight (Figs 96, 98) 95

93. Pronotum dominantly black Clinata gen. n. (C. nodicosta, Pl. 2)- Pronotum dominantly brown or greenish94
94. Fore wing very broad, about $2.2-2.4 \times$ longer than wide; hind wing usually with three apical cells. . . Toxala gen. n. (T. verna)Drymopsalta
95. Width of head including eyes clearly narrower than width across lateral angles of pronotal collar 96

- Width of head as wide as width of lateral angles of pronotal collar Nanopsalta gen. n. (N. basalis)

96. Distance between median ocellus and lateral ocellus about equal to or less than diameter of ocellus Punia gen. n.

- Distance between median ocellus and lateral ocellus much greater than diameter of ocellus 97

97. Male 98

- Female 100

98. Upper pygofer lobe a small rounded lobe 99

- Upper pygofer lobe very large (larger than in Fig. 88) and expanded apically Graminitigrina

99. Abdominal segment 3 narrower than abdominal segment 2 including auditory capsules
Paradina gen. n. (P. leichardti, Pl. 2)- Abdominal segment 3 at least as wide as abdominal segment 2
Mugadina gen. n .
100. Fore wing with infuscations 101

- Fore wing lacking infuscations 102

101. Bold infuscation along entire length of ambient vein Mugadina gen. n.

- Infuscation mostly as an apical suffusion Graminitigrina

102. Dome of cruciform elevation glossy jet black Mugadina gen. n.

- Dome of cruciform elevation dull yellow, sometimes muddied with black but never glossy black 103

103. Pronotum dominantly black Graminitigrina

- Pronotum light brown with some black markings Mugadina gen. n. or Paradina gen. n. (P. leichardti, Pl. 2)
104(87). Postclypeus large, in dorsal view protruding and not confluent with front margin of head (Fig. 89) but excluding specimensthat are green (or pale tan if discoloured) 105
- Postclypeus small and more or less confluent with anterior margin of head (Fig. 90) or green specimens (pale tan ifdiscoloured). 106

105. Dark coloured cicadas with most of pronotum black; male abdomen tending parallel-sidedUradolichos gen. \mathbf{n}.

- Paler cicadas with pronotum not dominated by black, the black markings reduced so that. Dipsopsalta gen. n. (D. signata, Pl. 2)abdomen tapering from abdominal segment 2 .

106. Head including eyes as wide as, or wider than maximum width of abdomen 107

- Head narrower than maximum width of abdomen 112

107. Fore wing length above 17 mm Ewartia gen. n. (E. oldfieldi)

- Fore wing less than 17 mm 108

108. Fore wing basal membrane orange (Pl.2, fig. 17) Plerapsalta gen. n.

- Fore wing basal membrane grey, brownish or blackish 109

109. Rostrum reaching at least to bases of hind coxae Drymopsalta

- Rostrum reaching to about apices of mid coxae 110

110. Dorsal beak absent, completely straight or broadly curved across apical region Crotopsalta

- Dorsal beak present as a developed apical spine or pointed apex (not always easy to see; magnification required). 111

111. Thorax and abdomen almost entirely black (Pl. 2, fig. 8) Platypsalta gen. n.- Thorax and abdomen not dominantly black (Pl.2, figs 13a,b)Paradina gen. n.

77

79

78

80

FIGURES 77-86. Diagrams accompanying key to genera: (77-78, 81-82, 85-86) right fore wing; (79-80, 83-84) right hind wing.
112. Abdomen above entirely green but if discolored then yellowish or tan 114

- Abdomen above not usually green (or yellowish or tan) but if so then with some obvious black markings 113

113. Abdominal segment 3 narrower than abdominal segment 2 including auditory capsules
Paradina gen. n. (P. leicharadti, Pl. 2)

- Abdominal segment 3 at least as wide as abdominal segment 2 Mugadina gen. n.

114. Male 115

- Female 116

115. Timbal plate large, occupying about three quarters of timbal membrane; two long ribs spanning the full height of the timbal(Fig. 55)Urabunana

- Timbal plate of more usual size, occupying no more than half timbal membrane; three long ribs spanning the full height of thetimbal (Fig. 56)Pipilopsalta

116. Width of head including eyes about as wide or wider than lateral angles of pronotal collar Urabunana
Width of head including eyes clearly narrower than lateral angles of pronotal collar Pipilopsalta
117(80). Fore wing with distinct infuscations 118

- Fore wing lacking infuscations 132

118. Infuscations confined to distal ends of ulnar cells 1 and 2 and sometimes also at wing tip (Fig. 97) 119

- Infuscations also elsewhere, e.g. along ambient vein or at distal ends of ulnar cells 2 or 3 (Figs 76, 98) 126

119. Head, thorax and abdomen entirely green or light tan, virtually without markings (Pl. 1, fig 6)- Head, thorax and abdomen never all green or light tan120
120. Hind wing marginal area clearly wider than fore wing marginal area; male with a very broad abdomen that is much wider than thorax Mugadina gen. n .

- Hind wing marginal area similar in width to fore wing marginal area; male abdomen about as wide as thorax 121

121. Head narrow, width across eyes clearly less than width of mesonotum between wings Physeema gen. n. (P. convergens) Head similar in width to mesonotum 122
122. Hind wing plaga clearly white (with no brown impurity) Gelidea gen. n. (G. torrida)

- Hind wing plaga brown or a mixture of white and brown 123

123. Fore wing basal membrane orange or orange brown 124

- Fore wing basal membrane grey or black, rarely with a slight brownish tinge Kobonga

124. Paranotum (lateral margin of pronotum) with a midlateral tooth 125

- Paranotum (lateral margin of pronotum) lacking a midlateral tooth Chelapsalta gen. n. (C. puer, Pl. 2)

125. Hind wing anal lobe with much of its distal margin straight; apical cell 3 usually much shorter than apical cell 4 (just over halfits length)Galanga gen. n. (G. labeculata)

- Hind wing anal lobe with much of its distal margin curved; apical cell 3 just a littler shorter than apical cell 4, neverapproaching half its lengthClinopsalta gen. n.
126(118). Infuscation present along much of ambient vein (Fig. 76) 127
- Infuscation not present along ambient vein (Fig. 98) Noongara gen. n. (N. issoides, Pl. 2)

127. Fore wing membrane hyaline beyond infuscations, just as clear as hind wing Kobonga Fore wing membrane weakly tinted brown, slightly darker than hind wing Myopsalta gen. n.
128. Male 129

- Female 130

129. Male abdomen about as wide as thorax Kobonga

- Male abdomen much wider than thorax Mugadina gen. n .

130. Ovipositor terminating level with end of abdomen (Fig. 103) Kobonga

- Ovipositor extending beyond end of abdomen (Fig. 104) 131

FIGURES 87-101. Diagrams accompanying key to genera: (87-88) male genitalia, lateral view; (89-94) head or head plus pronotum; (95-99) right fore wing; (100-101) right hind wing.
131. Ulnar cells much longer than apical cells Fig. 76) Kobonga

- Ulnar cells about as long as apical cells (Fig. 74)Mugadina gen. n.
132(117). Head narrow with distance between lateral ocellus and eye less than diameter of ocellus (Fig. 91); fore wing with anterior margin distinctly angled at node (Fig. 99) Froggattoides
- Head not so narrow, the distance between lateral ocellus and eye far greater than diameter of ocellus; fore wing with anterior margin either straight or curved evenly 133

133. Green, \tan (or if discolored, yellowish brown) cicadas, evenly coloured with very few, if any, markings; never with black markings on thorax or abdomen 134

- Not entirely green, tan or yellowish brown; if tending dominantly green, tan or yellowish brown then with some black mark-ings on thorax and/or abdomen141

134. Fore wing basal membrane orange, often bright orange 135
Fore wing basal membrane light grey, brownish, yellowish or colourless 138
135. Paranotum (lateral margin of pronotal collar) when view dorsally with a mid lateral tooth or angular projection (Fig. 94)
Clinopsalta gen. n.

- Paranotum smooth, completely lacking a mid lateral tooth or angular projection (Fig. 93) 136

136. Scutal depressions jet black (sd, Fig. 105) Birrima

- Scutal depressions green or brown, never black 137

137. Head including eyes wider than mesonotum between wings Ewartia gen. n.

- Head including eyes narrower than mesonotum between wings Erempsalta gen. n.

138. Head including eyes narrower than lateral angles of pronotal collar (Fig. 45) 139
Head including eyes as wide as or wider than lateral angles of pronotal collar Taurella gen. n.
139. Pterostigma (pigmented area on fore wing between veins Sc and RA) pale green to pale yellowish brown 140

- Pterostigma dark brown to black Samaecicada (S. subolivacea, Pl. 2)

140. Distance between lateral ocelli about equal to distance between lateral ocellus and eye Pipilopsalta (P. ceuthoviridis) Distance between lateral ocelli clearly greater than distance between lateral ocellus and eye Erempsalta gen. n.
141(133). Hind wing with a small black or grey infuscation at distal end of vein 2A that extends onto wing margin (Figs 100, 101)142

- \quad Hind wing lacking infuscation at distal end of vein 2 A 144

142. Hind wing anal lobe narrow, no wider than the maximum width of cubital cells cuc1 + cuc2 (Fig. 79); pronotum usually narrowing towards posterior Caliginopsalta

- Hind wing anal lobe broad, clearly wider than the maximum width of cuc1 + cuc2; pronotum parallel-sided or widening towards posterior, never narrowing 143

143. Essentially light-coloured cicadas, the males often substantially orange yellow, sometimes greenish or pale brownPalapsalta gen. n.

- Essentially dark-coloured cicadas, often extensively black with some reddish brown Pauropsalta

144. Paranotum (lateral margin of pronotal collar), when viewed dorsally, with a small tooth or obtusely angled around mid length(if only on one side treat as present) (Fig. 94)145

- Paranotum completely lacking a tooth and not obtusely angled around mid length, instead gently and evenly curved (Fig. 92) .159

145. Pronotum in dorsal view gradually narrowing throughout much of its length towards posterior (Fig. 54) . . . Plerapsalta gen. n.Pronotum in dorsal view more or less parallel-sided or widening towards posterior146
146. Mesonotum with a pair of nearly circular bright orange or pale yellow spots anterior of anterior arms of cruciform elevation(Pl. 1, figs 3a,b)Clinopsalta gen. n.

- Mesonotum lacking such spots 147

147. Rostrum barely reaching apices of mid coxae 148

- Rostrum passing apices of mid coxae 149

FIGURES 102-115. Diagrams accompanying key to genera: (102) male abdomen, lateral view; (103-104) distal segments of female abdomen, lateral view; (105) male head and body, dorsal view; (106-108) distal part of male thorax plus abdomen, ventral view; (109-110) male genitalia, lateral view; (111-113) male genitalia, ventral view; (114-115) aedeagus, lateral view.
148. Cruciform elevation with lateral area between anterior and posterior arms light brown to dull yellow Myopsalta gen. n .

- Cruciform elevation with lateral area between anterior and posterior arms substantially black Kobonga

149. Male 150

- Female 154

150. Abdomen below swollen, the sternites all clearly visible in lateral profile (Fig. 102) 151

- Abdomen below not excessively swollen, some distal sternites not visible in lateral profile 152

151. Last sternite (sternite VIII) short, clearly less than the combined lengths of the two previous sternites Physeema gen. n.

- Last sternite (sternite VIII) long, longer than the combined lengths of the two previous sternites Yoyetta gen. n.

152. Abdominal tergite 1 glossy, domed and large, length when measured along dorsal midline similar to, or slightly smaller than,largest abdominal segment
Pyropsalta gen. n. (P. melete)

- Abdominal tergite 1 not glossy, flat and small, length when measured along dorsal midline similar to or slightly smaller thanthe largest of other abdominal segments (Fig. 105)153

153. Abdominal segment 8 black or substantially so Yoyetta gen. n .

- Abdominal segment 8 substantially pale yellow to orange Auscala gen. n. (A. spinosa)

154. Abdominal tergites $1-3$ jet black, tergite 4 substantially orange, tergites $5-8$ jet black- Abdominal tergites not so coloured155
155. Rostrum very long, clearly passing apices of hind coxae 156

- Rostrum shorter, sometimes approaching but never reaching apices of hind coxae 157

156. A small cicada with fore wing length less than 20 mm Plerapsalta gen. n. (P. multifascia)

- A larger cicada with fore wing length greater than 25 mm .Auscala gen. n. (A. spinosa)

157. Fore wing basal membrane orange Yoyetta gen. n.

- Fore wing basal membrane grey or whitish 158

158. Ovipositor sheath terminating about level with end of abdomen (Fig. 103) Physeema gen. n.

- Ovipositor sheath extending beyond end of abdomen (Fig. 104) Pyropsalta gen. n.
159(144). Fore wing radial cell clearly shorter than the distance from its apex to wing tip (Fig. 61) 170
- Fore wing radial cell long, about equal to or longer than the distance from its apex to wing tip. 160

160. Pronotum mostly jet black (never grey black); head and abdominal markings usually orange or reddish 161

- Pronotum not mostly jet black, sometimes dark but not jet black; body markings never all orange or reddish 163

161. Fore wing basal membrane orange; opercula curved towards abdominal midline Plerapsalta gen. n.

- Fore wing basal membrane grey, brownish grey or blackish; opercula directed distally, not curved towards abdominal midline .
162

162. Pronotum virtually all black across dorsal surface (known only from the Sydney region)
Samaecicada (S. subolivacea, Pl. 2)- Pronotum black with a broad orange red or brownish orange fascia along midline .Drymopsalta
163. Dominantly black cicadas with mesothorax and abdomen mostly black 164

- Not dominantly black cicadas 167

164. Small cicadas with a fore wing length less than 17 mm 165

- Larger cicadas with a fore wing length greater than 19 mm Clinopsalta gen. n. (C. adelaida, Pl. 1)

165. Hind wing apical cell 1 very small, far less than half the length of apical cell 2 Samaecicada (S. subolivacea, P1. 2)Hind wing apical cell 1 no smaller than half the length of apical cell 2166
166. Fore wing unusually broad (often markedly so in males), 2.2x longer than wide or broader (Fig. 177e, Pl. 2, fig. 8)- Fore wing of usual proportions, about 2.6x longer than wide (Fig. 139f, Pl. 2, fig. 1)Drymopsalta
167. Male opercula small, narrow, sickle-shaped, clearly not developed around base of meracanthus (Fig. 107); female ovipositorsheath short, barely passing dorsal beak168

- Male opercula broad, only vaguely sickle-shaped, developed around base of meracanthus; female ovipositor sheath long, extending a distance equal to nearly half the length of abdominal segment 9 169

168. Mesonotum with dorsal midline marked by a pale fascia bordered either side by black; last male sternite (sternite VIII) long,longer than the combined lengths of the two previous sternitesYoyetta gen. n.

- Thoracic dorsal midline unmarked; last male sternite (sternite VIII) short, clearly less than the combined lengths of the twoprevious sternitesTaurella gen. n.

169. Rostrum reaching no further than bases of hind coxae Limnopsalta gen. n. (L. stradbrokensis)

- \quad Rostrum clearly passing bases of hind coxae, almost reaching apices Telmapsalta gen. n. (T. hackeri)

170. Thorax above green, greenish or orange; a broad dark red fascia on midline of mesonotum and sometimes also on pronotum .
Ewartia gen. n. (E. oldfieldi)

- Not coloured as above 171

171. Male 172
Female 202
172. Abdomen below swollen, with the bases of all sternites clearly visible in lateral profile (Fig. 102) 173

- Abdomen below not unusually swollen, with some distal sternites not visible in lateral profile 182

173. Abdominal tergite 1 large and as long as any one of abdominal segments 3-6 when measured along dorsal midline 174

- Abdominal tergite 1 small, and much shorter than any other abdominal segment (Fig. 105) 175

174. Base of operculum swollen and bubble-like Physeema gen. n.

- Base of operculum flat Chelapsalta gen. n. (C. puer, Pl. 2)

175. Abdomen in dorsal view entirely reddish, orange, yellowish or green except for a black (or nearly black) segment 8Palapsalta gen. n.

- Abdomen not as above 176

176. Width of head including eyes less than maximum width of abdomen 177

- Width of head including eyes equal to or greater than maximum width of abdomen 179

177. Abdomen exceptionally broad and stout, the length along dorsal midline of segments 1 and 2 combined about equal to thelength of segments 3 and 4 combined (abnormal specimens; rarely encountered)Mugadina gen. n.

- Abdomen broad but not exceptionally so, the length along dorsal midline of segments 1 and 2 combined about equal to thelength of segments 3,4 and 5 combined178

178. Male sternites 3-6 pale, without black markings; abdomen above never entirely black Telmapsalta gen. n. (T. hackeri)Male sternites 3-6 with a broad black fascia along midline OR if lacking such a fascia then abdomen above entirely black ...
Myopsalta gen. n.
179. Opercula small, covering only about half of tympanal cavity Crotopsalta

- Opercula of usual size, almost covering tympanal cavity 180

180. Fore wing basal membrane orange 181

- Fore wing basal membrane grey or blackish Limnopsalta gen. n. (L. stradbrokensis)

181. Abdomen above mostly orange or orange brown (rarely yellowish) with a broad black midline Yoyetta gen. n.

- Abdomen above mostly black, only the distal margins of segments orange or orange brown (Pl. 2, fig. 5) Gagatopsalta
182(172). Last abdominal sternite VIII very long, its exposed length about equal to combined lengths of previous three sternites 183
- Last abdominal sternite VIII short (Fig. 108), its exposed length no longer than combined lengths of previous two sternites,often much less184

183. Base of abdomen below with a large dish-shaped round depression (a species confined to Norfolk I.) Kikihia (K. convicta) Base of abdomen with or without a depression, if present never round and dish-like Yoyetta gen. n.
184. Opercula saucer-shaped, extending distally to sternite III (Fig. 106) Birrima
Opercula more or less flat, curved towards abdominal midline, not extending to sternite III (Figs 107, 108) 185
185. Opercula small, sickle-shaped, clearly not developed around base of meracanthus (Fig. 107) 186

- Opercula tending not sickle-shaped, developed around base of meracanthus (Fig. 108) 187

186. Pronotum in dorsal view gradually narrowing throughout much of its length towards posterior (Fig. 54. Pl 2, fig. 17) .
Plerapsalta gen. n.

- Pronotum in dorsal view more or less parallel-sided or widening towards posterior Taurella gen. n.

187. Abdominal tergite 1 glossy, domed and large, length when measured along dorsal midline similar to or slightly smaller than thelargest of other abdominal segments188

- Abdominal tergite 1 not glossy, flat and small, length when measured along dorsal midline similar to the smallest of otherabdominal segments189

188. Rostrum reaching almost to apices of hind coxae Pyropsalta gen. n. (P. melete)

- Rostrum reaching to near bases of hind coxae189. Meracanthus rudimentary, very short, often obtuse (Fig. 108)Sylphoides gen. n. (S. arenaria)
- Meracanthus normal, developed into a flat, pointed spine (Figs 106, 107) 190

190. Upper pygofer lobes very long, the most distal part of pygofer, often (but not always) distally expanded (Fig. 88) (alwaysexposed on dried specimens)191

- Upper pygofer lobes small to moderately developed, not the most distal part of pygofer, distally rounded (Figs 109, 110) (oftennot exposed on dried specimens)192

191. Head including eyes broad, clearly wider than mesonotum between wings Palapsalta gen. n.
Head including eyes about as wide as mesonotum between wings Pauropsalta
192. Abdomen much abbreviated, the ratio of length/width 1.3 x or less Ewartia gen. n. (E. brevis)

- Abdomen not abnormally abbreviated 193

193. From here on it may be necessary to dissect the male genitalia ${ }^{1}$ (alternatively try keying a female)
Aedeagus with its distal end turned through 180° (Figs 110, 114); four long timbal ribs spanning the full height of the timbal . .
Yoyetta gen. n.

- \quad Aedeagus not turned through 180° (Fig. 84); three long timbal ribs spanning the full height of the timbal 194

194. Claspers diverging towards their distal ends (Figs 111, 112) 195

- \quad Claspers distally parallel (or almost so) to each other (Fig. 113) 199

195. Claspers with their apices very widely separated, forming the widest dimension of the claspers (Fig. 111) Gagatopsalta- Claspers with their apices not widely separated, nowhere near the widest dimensions of the claspers (Fig. 112)196
196. Pygofer basal lobe in lateral view abutted against or tucked behind pygofer margin 197

- Pygofer basal lobe in lateral view standing clear of pygofer margin Heliopsalta gen. n. (H. polita, Pl 1)

197. Rostrum long, reaching or almost reaching apices of hind coxae; fore wing basal membrane grey or blackish, never orange . .Telmapsalta gen. n. (T. hackeri)

- \quad Rostrum reaching to about apices of mid coxae; fore wing basal membrane usually orange 198

198. Abdominal segment 2, where it forms posterior side of timbal cavity, sharply angular Simona gen. n. (S. sancta)

- Abdominal segment 2, where it forms posterior side of timbal cavity, very rounded Chelapsalta gen. n. (C. puer, Pl 2)
199(194). Pygofer lacking a dorsal beak 201
- Pygofer with a spine-like dorsal beak 200

200. Fore wing basal membrane orange; opercula curved towards abdominal midline Plerapsalta gen. n.

- Fore wing basal membrane grey or blackish; opercula directed distally, not curved towards abdominal midline . .Drymopsalta

201. Fore wing unusually broad; abdomen substantially black with tergite 8 entirely black \qquad

- Fore wing not unusually broad; abdomen often substantially brown including tergite 8 which always has at least its distal third yellowish, brown or reddish
Crotopsalta

[^0]202(171). Abdominal segment 9 lacking a dorsal beak 203

- Abdominal segment 9 with a dorsal beak 205

203. Ovipositor sheath terminating about level with end of abdomen 204

- Ovipositor sheath very long, terminating far beyond end of abdomen Myopsalta gen. n.

204. Abdominal segment 9 never black across dorsal surface Crotopsalta

- Abdominal segment 9 always black across dorsal surface Platypsalta gen. n.

205. Ovipositor sheath extending beyond end of abdomen (Fig. 104) 206
Ovipositor sheath terminating about level with end of abdomen (Fig. 103) 220
206. Meracanthus degenerate, almost domed with hardly any distal development 207

- Meracanthus well developed and distally produced 208

207. Abdomen about as wide as thorax and head . Sylphoides gen. n. (S. arenaria)Abdomen clearly wider than thorax and head
Mugadina gen. n.
208. Head clearly wider than mesonotum between wings 209

- Head of similar width or narrower than mesonotum 214

209. Meracanthus narrow at base, finger-like Taurella gen. n.

- Meracanthus broad at base, in shape either triangular or narrowed apically 210

210. Pronotum dominantly black with a broad brown, reddish or yellowish midline 211

- Pronotum dominantly tan or brown, usually with some black markings 212

211. Fore wing basal membrane grey Pauropsalta
Fore wing basal membrane orange Palapsalta gen. n.
212. Rostrum reaching only to apices of mid coxae Palapsalta gen. n.

- Rostrum reaching to at least bases of hind coxae 213

213. Dorsal region of postclypeus flat and horizontal; operculum usually not reaching to level of meracanthus apexYoyetta gen. n.

- Dorsal region of postclypeus rounded with virtually no horizontal area; operculum always reaching or surpassing level ofmeracanthus apexEwartia gen. n. (E. brevis)
214(208). Rostrum clearly passing bases of hind coxae, almost reaching apices 215
- Rostrum reaching no further than about bases of hind coxae 216

215. Ovipositor sheath very long, extending some 2 mm or more; brown cicadas Telmapsalta gen. n. (T. hackeri)Ovipositor sheath extending about 1 mm ; dominantly black cicadasPyropsalta gen. n. (P. melete)
216. Width of head clearly narrower than maximum width of abdomen 219

- Width of head as wide as or wider than maximum width of abdomen 217

217. Fore wing basal membrane orange or orange brown Yoyetta gen. n.

- Fore wing basal membrane black or grey 218

218. Ovipositor sheath very long, extending far beyond dorsal beak, many times the length of dorsal beak Yoyetta gen. n.

- Ovipositor sheath short, extending beyond dorsal beak but no more than twice the length of dorsal beak
Limnopsalta gen. n.

219. Postclypeus clearly grooved along a substantial length of ventral midline Chelapsalta gen. n. (C. puer, Pl. 2, fig. 5)

- Postclypeus smooth or with just a hairline groove on part of ventral midline (a species confined to Norfolk I.)$220(205)$. Width of head including eyes clearly wider than paranota (lateral margins of pronotum) (Fig. 93)221
- Width of head including eyes about as wide or narrower than paranota (Fig. 92) 226

221. Rostrum reaching to apices of mid coxae Gagatopsalta

- Rostrum clearly past apices of mid coxae 222

222. Ulnar cells $1-4$ all similar in length and tending parallel-sided (similar to Fig. 73) Chelapsalta gen n. (C. puer)

- Ulnar cells $1-4$ variable in length and shape (Fig. 70) 223

223. Fore wing length less than 19 mm Plerapsalta gen. \mathbf{n}.
Fore wing length greater than 19 mm 224
224. Fore wing with fused stem of veins M and CuA long, greater than length of long side of basal cell Yoyetta gen. n .

- \quad Fore wing with fused stem of veins M and CuA short, less than length of long side of basal cell 225

225. Fore wing basal membrane grey or whitish Physeema gen. n.

- Fore wing basal membrane red or orange Yoyetta gen. n .
226(220). Rostrum reaching to about apices of hind coxae Birrima
- Rostrum reaching no further than about bases of hind coxae 227

227. Fore wing radial cell about as long as ulnar cell 1 (Fig. 97) 228

- Fore wing radial cell long, clearly longer than ulnar cell 1 229

228. Fore wing basal membrane grey Heliopsalta gen. n. (H. polita)- Fore wing basal membrane orangeSimona gen. n. (S. sancta)
229. Very small cicadas with a fore wing length less than 11 mm Drymopsalta

- Larger cicadas with a fore wing length 14 mm or longer 230

230. Postclypeus clearly grooved along a substantial length of midline Yoyetta gen. n.

- Postclypeus smooth with just a hairline groove on part of midline Kikihia

GENERIC REVIEWS AND DIAGNOSES

Genus ABRICTA Stål

Moulds (2003) revised this genus, transferring A. curvicosta to Aleeta Moulds and the majority of the remaining Australian species to Tryella Moulds. The four Australian species remaining in Abricta are here transferred to other genera as listed below because they lack characteristic features of that genus such as large eyes and male genitalia with secondary basal pygofer lobes and conjunctival claws. Thus, no Australian species now remains in Abricta.

Excluded species: The following are transferred to other genera as listed.
borealis (Goding and Froggatt), to Adelia gen. n., q.v.
burgessi Distant, to Tamasa, q.v.
cincta (Fabricius), to Diemeniana, q.v.
occidentalis Goding and Froggatt, to Pictila gen. n., q.v.

Genus ADELIA gen. n.

Type species: Abricta borealis Goding and Froggatt, 1904 (Pl. 1, figs 9a, 9b).
Included species: AUSTRALIA: borealis (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. From the Greek adelos meaning unknown or obscure, and referring to the obscure and seemingly elusive nature of this species.

Distribution (Fig. 116h): South-western Western Australia. The only confirmed locality is Yarloop.
Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at
dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth (absent on some individuals); cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 116f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; costa of male strongly bowed on distal half; pterostigma present; vein CuA strongly bowed so that cubital cell much larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins and r-m much less than distance between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation overlaying veins at bases of apical cells 2,3 and part of 4 , infuscations elsewhere lacking; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 116g) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 116e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, meeting or almost so, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 116e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites normal (not unusually swollen), sternites III-VI in crosssection convex. Timbals with four long ribs spanning the full height of the timbal and one not so long, spaced with intermediate short ribs; basal dome large; anterior part of timbals mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 116a-d). Pygofer in ventral view ovoid to subovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat; wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back, thecal shaft nearly straight; pseudoparameres present, dorsal to theca and originating distal to thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of their length with proximal half or so diverging from ventral support; endotheca exposed, chitinous; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to medium-sized cicadas. Distinguished from other genera by having the combination of fore wing veins M and CuA close together at the basal cell but not meeting, vein CuA strongly bowed compressing the medial cell, infuscations present at bases of apical cells 2 and 3 and partly on 4 , and the male opercula meeting or almost so. The male aedeagus has a typically 'trifid' theca with an exposed but chitinous endotheca. The modified fore wings give the single known species a distinctive appearance (Fig. 116f and Pl. 1).

Discussion. The phylogenetic relationships of this genus have been discussed by Moulds (2005a) represented in the analyses by the species name Abricta borealis.

FIGURE 116. Genus Adelia gen. n.: (a) A. borealis (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) underside of male body showing opercula; (f) the same, right fore wing; (g) the same, right hind wing; (h) generic distribution.

Genus aleeta Moulds

Aleeta Moulds, 2003: 263; Moulds, 2005a: 393, 402, 413, 425, 430, 437; Moulds, 2005b: 133-138, 140; Duffels, 2011: 81.

Type species: Cicada curvicosta Germar, 1834, by original designation.

Included species: AUSTRALIAN: curvicosta (Germar 1834). OTHERS: none.
Distribution (Fig. 117j): Eastern Australia from the Daintree River, northern Queensland, to Bendalong on the NSW mid South Coast, mainly coastal but also inland (Moulds 2003).

Diagnosis. Head including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, mid lateral tooth absent; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 117f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costal margin anterior of costa strongly ampliate, reducing to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but not touching; vein CuA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 in some species, also at distal end of vein RA_{2}; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 117g) with 6 apical cells; infuscation at distal end of vein 2 A spread on wing margin; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 117e) broad, almost meeting, extending laterally beyond lateral margin of abdomen and distally clearly beyond tympanal cavities. Male abdomen (Fig. 117e). in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites 4-6 in cross-section flat except for upward tilted margin. Timbal covers absent, timbal ribs many, and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases. Male genitalia (Figs 117a-d). Pygofer with distal shoulders not developed; upper lobes small to moderately developed, set well away from dorsal beak, tending to be bilobed; basal lobe divided creating secondary basal lobe, large, in lateral view projecting outwards, approximately triangular; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, widely separated, restraining aedeagus, beak-like, down-turned. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view basally divided into two discs with apical arms lobe-like; basal portion of basal plate directed forwards away from thecal shaft; ventral rib rod-like with attachment only at ends; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through some 1400; pseudoparameres absent; thecal apex entirely chitinized; thecal subapical cerci absent; flabellum present; conjunctival claws present, flattened, broad in lateral view, narrow in ventral view; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 117h) with accessory glands long.

Female reproductive system (Fig. 117i) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Medium-sized cicadas. Distinguished from other Australian genera except Tryella by lacking timbal covers and having the fore wing costal margin anterior of costa ampliate to the node, the maximum dilation clearly wider than the costal vein. Differs from Tryella in size, the fore wing rarely less than 32 mm in length, usually over 40 mm ; that of Tryella never reaching 32 mm , usually less than 26 mm .

The male genitalia are very distinctive; the sublateral flanges on the aedeagus are unique to Aleeta and the laterally flattened conjunctival claws of Aleeta are unlike those of any other cicada genus. The beak-like claspers and the partially bifurcate upper pygofer lobes do not occur in allied genera.

Discussion. The single species in this genus and its associated literature has been reviewed by Moulds (1990, 2003) including a detailed analysis of its song. Its phylogenetic relationships have been discussed by Moulds (2003, 2005a). Notes on emergence patterns and densities and other aspects of biology can be found in Ewart (2001a) and Emery et al. (2005). Further notes on the single species included in this genus, including its song, are provided by Ewart (1995) and Young \& Josephson (1983). Note that the structures referred to as uncal lobes in Moulds (2003) are in fact claspers (see Moulds 2005a for discussion of homologies).

FIGURE 117. Genus Aleeta Moulds: (a) A. curvicosta (Stål), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view with vesica extended; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male head and body, ventral view showing opercula; (f) the same, right fore wing; (g) the same, right hind wing; (h) the same, male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution. $c c$ conjunctival claw, $c l$ clasper, $s f$ sublateral flange, upl upper pygofer lobe.

Genus ANAPSALTODA Ashton

Anapsaltoda Ashton, 1921: 96; Neave, 1939a: 177; Burns, 1957: 615; Metcalf, 1963: 155; Duffels and van der Laan, 1985: 53; Moulds, 1990: 71; Moulds, 2005a: 377, 387-391, 412, 413.

Type species: Psaltoda pulchra Ashton, 1921, by original designation.
Included species: AUSTRALIAN: pulchra (Ashton, 1921). OTHERS: none.
Distribution (Fig. 118e): North-eastern Queensland, where it is restricted to the Atherton Tableland and adjoining ranges and the Kirrama Range (Moulds 1990).

Diagnosis. Head including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota ampliate, evenly rounded, sloping forwards, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa reducing to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3, also at extremities of longitudinal veins adjacent to ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; infuscation along much of ambient vein; width of 1st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe pigmented orange, broad with vein 3 A curved, long and separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 118e) completely covering rim of distal margin of tympanal cavity, opercula overlapping, reaching level with distal margin of tergite 2 ; lateral margin very long and straight. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; sternites IV-VII in cross-section entirely flat. Timbal covers present, flat, fully rounded dorsally and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 118a-d). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes thickened, well developed; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe fingerlike and with very broad apex, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Large, robust cicadas, essentially green and gold in colour. The hind wing anal lobe, which is entirely and boldly pigmented orange, clearly distinguishes this genus from any other Australian genus. Also differs from the closely allied genera Psaltoda and Neopsaltoda in having the supra-antennal plate curved under the head so that when viewed ventrally the rim is clearly positioned on the ventral side of the head. The male genitalia have a distinctive uncal lobe which in dorsal view is broad with an expanded, broad apex (Fig. 118b), plus restraint of the aedeagus by fleshy sinuation prior to the aedeagus reaching the ventral surface of the uncus; characters shared only with Psaltoda and Neopsaltoda.

Discussion. The single species in this genus has been reviewed by Moulds (1990). Its phylogenetic relationships have been discussed by Moulds (2002, 2005a).

FIGURES 118. Genus Anapsaltoda Ashton: (a) A. pulchra Ashton, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsolateral view, apex at right; (e) the same, male body, ventral view showing opercula; (f) generic distribution. $b p l$ basal pygofer lobe, $u p l$ upper pygofer lobe.

Genus ARENOPSALTRIA Ashton

Arenopsaltria Ashton, 1921: 97; Neave, 1939a: 288; Burns, 1957: 620, 621; Metcalf, 1963: 144; Duffels and van der Laan, 1985: 50; Moulds, 1990: 66; Moulds, 2005a: 377, 387, 391, 393, 423, 430, 431.

Type species: Fidicina fullo Walker, 1850, by original designation.
Included species: AUSTRALIAN: fullo (Walker, 1850), nubivena (Walker, 1858), pygmaea (Distant, 1904), OTHERS: none.

Excluded species: unicolor Ashton, to Parnquila gen. n., q.v.
Distribution (Fig. 119h): Coastal and subcoastal regions of Western Australia between the Murchison and Margaret Rivers and in South Australia from the Eyre Peninsula to the far north-west of Victoria (Moulds 1990).

Diagnosis. Head including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota marginally ampliate, no mid lateral tooth but margin serrate; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 119e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion longest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2-5 and 7, also at extremities of longitudinal veins near ambient vein, some species with additional vein infuscations; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 119f) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat. Male opercula (Fig. 119g) covering rim of distal margin of tympanal cavity, reaching a little beyond level of distal margin of tergite 2, overlapping. Male abdomen (Fig. 119g): in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; sternites IV-VII in cross-section convex. Timbal covers present, flat, fully rounded dorsally and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule, overlapping operculum. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 119a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe finger-like but broad with the widest point between rounded subapical lobes, apically bilobed, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped or spiral; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small to medium-sized cicadas with robust bodies, deep brown to nearly black in colour, and broad wings strongly infuscated. Distinguished from other genera by having the combination of a pronotal collar with a serrate lateral margin (otherwise found only in Henicopsaltria eydouxii), and male timbal covers that substantially overlap the opercula. The extensive fore wing infuscations, although not unique in their arrangement to this genus, do tend to distinguish it from most genera; they are very bold and always present at the base of apical cell 7 and at the distal ends of the longitudinal veins. In addition, the fore wings are broad, their width about one third their length.

The male genitalia lack pygofer upper lobes, the theca is strongly recurved on its distal half, and the basal plate in lateral view is sharply turned through more than 90°.

FIGURE 119. Genus Arenopsaltria Ashton: (a) A. fullo (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, underside of body showing opercula; (h) generic distribution.

Discussion. The phylogenetic relationships of this genus have been discussed by Moulds (2005a). The species of this genus have been reviewed by Moulds (1990). Gwynne et al. (1988) provides notes on the biology, behaviour and song of A. fullo.

Genus ARUNTA Distant

Arunta Distant, 1904a: 302; Distant, 1906d: 26; Froggatt, 1907: 349; Ashton, 1912d: 76; Distant, 1912a: 20; Ashton, 1914a: 346; Ashton, 1921: 90; Schulze, Kükenthal and Heider, 1926-40: 288; Kato, 1932: 152; Kato, 1933: 351; Neave, 1939a: 310; Kato, 1956: 67; Burns, 1957: 612; Burns, 1962a: 259; Burns, 1962b: 270; Popov, 1975a: 34; Popov, 1975b: 288; Metcalf, 1963: 141-2; Young, 1973: 378; Duffels and van der Laan, 1985: 49; Moulds, 1990: 58; Moulds 2005a: 387-389, 393, 413, 430, 434.

Type species: Cicada perulata Guérin-Méneville, 1831, by original designation.
Included species: AUSTRALIAN: perulata (Guérin-Méneville, 1831), interclusa (Walker, 1858). OTHERS: none.

Distribution (Fig. 120h): Weipa district on the west coast of Cape York Peninsula and the eastern seaboard of Queensland and NSW from Hammond Island, Torres Strait, to Narooma (Ewart 2005b, Moulds 1990).

Diagnosis. Head (Fig. 120e) including eyes about as wide as mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 120e): pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth but some individuals of A. perulata with margin finely serrate; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa par-allel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion longest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 in some species, infuscations elsewhere lacking; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula completely covering tympanal cavity, completely encircling meracanthus, not overlapping. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; male tergites 2 and 3 enlarged, accounting for approximately half abdominal length; male sternites IV-VII in cross-section flat except for upward tilted margin. Timbal covers present, grossly swollen, sac-like and projecting distally, anterior dorsal margin fully rounded and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view in lateral view timbals extended below wing bases.

Male genitalia (Figs 120a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe finger-like, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view broad, apically broadly bilobed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 120f) with accessory glands long.

Female reproductive system (Fig. 120g) ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Medium-sized to large cicadas. Distinguished from all other Australian genera by having the combination of the distance between the supra-antennal plate and eye about equal to the length of the

3

FIGURE 120. Genus Arunta Distant: (a) A. perulata (Guérin-Méneville), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum; (f) the same, male reproductive system, dissection with aedeagus removed from pygofer; (g) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (h) generic distribution.
supra-antennal plate, a pronotal collar (Fig. 120e) that is broad across the dorsal surface (almost equal in width to the lesser diameter of the eyes) but with its lateral margins (paranota) largely confluent with the pronotum rather than strongly ampliate, and fore wing veins M and CuA widely separated at the basal cell. Further, the males of Arunta possess very large and very distinctive, bulbous, sac-like timbal covers, a feature shared within the Australian fauna only with Thopha; the colour of these timbal covers clearly differs between the two genera with those of Arunta being white while those of Thopha are dark brown or orange. Also, Arunta differs from Thopha in having the timbal covers extending backwards beyond the 2 nd abdominal segment while those of Thopha reach only a little beyond the 1 st abdominal segment, and the head of Arunta is narrow so that the eyes are closer together than the distance between the lateral fissures of the pronotum while the head of Thopha is very wide so that the distance between the eyes is greater than between the lateral fissures.

The male genitalia have a very characteristic uncus that is long and finger-like and almost paired except for a thin fusion along the length of its midline. The basal plate is rather flat, a condition very different from that of the allied genus Thopha.

Discussion. This is the only Australian genus that has adapted to salt water mangrove situations. Phylogenetic relationships can be found in Moulds (2005a). Burns (1962a) and Moulds (1990) have reviewed the genus. Notes on emergence patterns and densities for A. perulata are provided by Ewart (2001a). Further notes and song analyses can be found in Ewart (1995, 2001b, 2005b) and Young \& Josephson (1983).

Genus AUSCALA gen. n.

Type species: Melampsalta spinosa Goding and Froggatt, 1904.
Included species: AUSTRALIAN: spinosa (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. Derived from the word Australia and the Latin cala, a piece of wood, and indirectly referring to the male's song that resembles creaking tree branches. Feminine.

Distribution (Fig. 121e): South eastern Queensland south from near Edungalba (inland from Rockhampton), through central NSW and in western Sydney, and the drier north-west quarter of Victoria to Bordertown and Frances in the south-east of South Australia (Moulds 1990, Emery and Emery 2002, Smith 2010).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins and r-m much less than distance between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting; base (remnant of epimeron 3) much swollen and bubble-like. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); spaced with intermediate short ribs; basal dome large; not extended below wing bases; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbal covers absent.

FIGURE 121. Genus Auscala gen. n.: (a) A. spinosa (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) generic distribution.

Male genitalia (Figs 121a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, apically rounded in lateral view; basal lobes undivided, moderately developed, rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, fang-like, excavated ventrally, restraining aedeagus; unfused; with a rounded, inward-facing swelling on inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view directed upwards compared to thecal shaft with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small to medium-sized cicadas. Distinguished by having the combination of fore wing veins M and CuA with their stems fused as one on meeting the basal cell, the fore wings lacking infuscations, the paranota with a small mid lateral tooth, the base of the male opercula much swollen and bubble-like, and the anterior part of the timbals mostly occupied by ribs.

The male genitalia have a typically 'trifid' theca exposing a fleshy endotheca, and the claspers are inwardly swollen around mid length. The female has an exceedingly long abdominal segment 9 and a long projecting ovipositor sheath.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. The single described species in the genus is figured in Moulds (1990). Notes on the biology, distribution and synonymy of A. spinosa are provided by Moulds (1990). Haywood (2006a) provides notes on the distribution, habitat, song and conservation status of A. spinosa in South Australia. Popple \& Strange (2002) provide notes on habitat in Queensland. Notes on emergence times and plant association are provided by Emery et al. (2005) and Ewart (1998a).

Genus BAETURIA Stål

Since the publication of Moulds (1990), the three Australian species then placed in Baeturia have been transferred to other genera (de Boer, 1993a, 1995a) as listed below. Thus, Baeturia is no longer represented in the Australian fauna.
flava Goding and Froggatt, 1904, to Guineapsaltria, q.v.
rufa Ashton, 1914, to Gymnotympana, q.v.
varicolor Distant, 1907, to Gymnotympana, q.v.

Genus BIRRIMA Distant

Birrima Distant, 1906a: 388; Distant, 1906d: 163, 178; Ashton, 1914a: 356; Schulze, Kükenthal and Heider 1926-40: 405; Kato, 1932: 186, 187; Neave, 1939a: 432; Kato, 1956: 70; Burns, 1957: 667; Metcalf, 1963: 274; Dugdale, 1972: 877; Duffels and van der Laan, 1985: 312; Moulds, 1990: 171; Moulds, 2005a: 390, 402, 413, 430, 436.

Type species: Melampsalta castanea Goding and Froggatt, 1904 [$=$ Birrima montrouzieri Distant, 1906], by monotypy.

Included species: AUSTRALIAN: castanea (Goding and Froggatt, 1904), varians (Germar, 1834). OTHERS: none.

Distribution (Fig. 122j): Atherton district in northern Queensland, eastern Queensland south from Rockhampton and eastern NSW to near Sydney (Moulds 1990).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 122f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell completely fused as one for part of their length; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 122g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 122e) broad but not meeting, reaching midlength of sternite III, strongly domed and somewhat saucer-shaped, clearly raised above level of tympanal cavity on its outer half. Male abdomen (Fig. 122e) in crosssection with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VI in cross-section flat except for upwardly tilted margin. Timbal covers absent; timbal ribs irregular in size, lacking prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 122a-d). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view downturned at distal end; in dorsal view T-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; pseudoparameres present, entirely lateral of theca, filiform or nearly so; thecal apex partly fleshy, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening dorsal on theca. Male reproductive system (Fig. 122h) with accessory glands short.

Female reproductive system (Fig. 122i) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Small cicadas. The domed, saucer-shaped male opercula (Fig. 122e), which are partly visible from above, are unique amongst Australian genera. Both sexes have sternite IV (and usually also other sternites) indented around the midline. Female abdominal segment 9 is slightly longer than an equilateral triangle in dorsal view, which, together with a rostrum that reaches almost to the apices of the hind coxae, also helps characterise females. The male aedeagus is clearly diagnostic for the genus, possessing a fleshy dorsal surface almost for its entire length and filiform pseudoparameres.

Discussion. The phylogenetic relationships of this genus have been discussed by Moulds (2005a). Moulds (1990) summarises the distribution and biology of the species. Coombs (1996) and Ewart (1995) provide further notes on B. varians and Ewart provides a song analysis.

Review of selected species

Birrima castanea (Goding and Froggatt)

[^1]

i

FIGURE 122. Genus Birrima Distant: (a) B. castanea Goding and Froggatt, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, underside of male body showing opercula; (f) the same, right fore wing; (g) the same, right hind wing; (h) male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution.

A comparison of the type female of M. fulva from "N.S.Wales' (in the BMNH) with females of B. castanea clearly showed that the two are conspecific. The holotype of M. fulva is a teneral specimen and not well coloured but it matches perfectly the colour of teneral females of B. castanea, as well as matching morphologically.

Genus BURBUNGA Distant

Burbunga Distant, 1905e: 26, 29; Distant, 1906d: 128, 133; Ashton, 1914a: 350; Delétang, 1923: 629; Schulze, Kükenthal and Heider, 1926-40: 470; Kato, 1932: 180, 181; Neave, 1939a: 502; Metcalf, 1947: 163; Kato, 1956: 62, 69, 79, 84; Burns, 1957: 638; Metcalf, 1963: 215; Duffels and van der Laan, 1985: 237; Moulds, 1990: 127; Moulds 1994: 97; Moulds 2005a: 393, 416, 425, 429-431.

Type species: Tibicen gilmorei Distant, 1882, by original designation.
Included species: AUSTRALIAN: albofasciata Distant, 1907; aterrima (Distant, 1914); gilmorei (Distant, 1882); hillieri (Distant, 1907) (nec. Burbunga hillieri Distant, 1906), comb. n.; inornata Distant, 1905; nanda (Burns, 1964), comb. n.; nigrosignata (Distant, 1904), comb. n.; occidentalis (Distant, 1912), comb. n.; parva Moulds, 1994; queenslandica Moulds, 1994. OTHERS: none.

Excluded species: The following are transferred to other genera as listed.
hillieri Distant, 1906, to Parnquila gen. n., q.v.
venosa Distant, 1907, to Parnquila gen. n., q.v.
Distribution (Fig. 123f): Throughout much of the southern half of Western Australia, through Northern Territory and the southern half of Queensland, much of western New South Wales and the northern half of South Australia (Moulds 1990, 1994a).

Diagnosis. Head including eyes wider than, about equal to, or narrower than mesonotum; distance between supra-antennal plate and eye about equal to or longer than length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; veins CuP and 1 A fused in part; most species with infuscation overlaying veins at bases of apical cells $2-5$ and 7 , and at extremities of longitudinal veins; all species with infuscation or darkening of veins at bases of apical cells 2 and 3 but sometimes indistinct in B. albofasciata; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, and separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, clearly separated. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers present, rarely absent, if present then flat, reduced dorsally and not reaching metathorax, lower margin extending anteriorly from or very near auditory capsule, or sometimes effectively absent. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view in lateral view timbals extended below wing bases.

Male genitalia (Figs 123a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately to weakly developed, tending to be almost straight and mostly hidden in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply

d

FIGURE 123. Genus Burbunga Distant: (a) B. gilmorei (Distant), male genitalia, ventral view; (b) the same, male genitalia, lateral view; (c) the same, pygofer showing dorsal beak; (d) aedeagus, lateral view; (e) B. queenslandica, male reproductive system, dissection with aedeagus removed from pygofer; (f) generic distribution.
angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped or spiraled; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 123e) with accessory glands long.

Female abdominal segment 9 short, dorsal midline about equal in length to abdominal tergites 2 and 3; ovipositor sheath marginally protruding. Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to very large cicadas. Distinguished from all other Australian genera except Parnquila by having the combination of a metanotum entirely concealed at dorsal midline, the basal cell of the fore wing long and slender, the epimeral lobe not reaching the operculum, and the apices of the supra-antennal plate rounded rather than pointed. In addition, the male timbal covers are reduced and do not close the timbal cavities and all but B. albofasciata have a very wide head with the distance between the eyes greater than the distance between the lateral fissures of the pronotum.

The male genitalia are definitive in characterising the genus, having a small development of the distal shoulders, no upper pygofer lobes, small basal lobes, fleshy tubular uncal encapsulation of the aedeagus, and a spiraled aedeagus with a basal plate that is turned back against the thecal shaft and is deeply divided so that part sits either side of the shaft (Fig. 123d).

Burbunga is readily distinguished from Parnquila by the male genitalia; notable differences being the spiraled theca, the vesical opening (gonopore) not ventrally positioned at the apex of the theca, and the basal plate that is turned back on the thecal shaft.

Discussion. The species listed as new combinations above all originate from Macrotristria. They possess the following characters typical of Burbunga: the male timbal covers are weakly developed, the male opercula cover the tympanal cavities but do not meet, and the male genitalia have a pygofer bearing a dorsal beak, an uncus that secures the aedeagus by tubular encapsulation and a spiraled aedeagus.

The phylogenetic relationships of this genus have been discussed by Moulds (2005a). Several species of this genus have been reviewed by Moulds (1990, 1994). Notes on species, including song analyses and/or habitat, can be found in Ewart (1988, 1998a), Ewart \& Popple (2001) and Popple \& Strange (2002).

Review of selected species

Burbunga hillieri (Distant, 1907), comb. n.

Macrotristria hillieri Distant, 1907: 413 (nec Burbunga hillieri Distant, 1906).

The transfer of M. hillieri to Burbunga places it as a junior homonym of B. hillieri Distant, 1906. However, B. hillieri is transferred from Burbunga to Parnquila gen. n. which eliminates the situation of having two species named hillieri in the genus simultaneously. Following Article 59.2 of the Code (fourth edition) concerning secondary homonyms Burbunga hillieri Distant, 1907, comb. n. retains its original name.

Fore wing infuscation of this species varies over its geographic range (Moulds 1990) with specimens from Queensland showing little to no infuscation while the most boldly marked individuals occur in coastal districts of Western Australia. These boldly marked specimens have infuscations nearly identical to B. gilmorei and its allies. Burbunga hillieri and B. nanda comb. n., are now by far the largest species of Burbunga.

Genus CALIGINOPSALTA Ewart

Caliginopsalta Ewart 2005a: 470-471.

Type species: Caliginopsalta percola Ewart, 2005, by original designation (Pl. 2, fig. 3).
Included species: AUSTRALIAN: percola Ewart, 2005. OTHERS: none.
Distribution (Fig. 124g): Inland areas of south-eastern Queensland south from Theodore and west to Millmerran (Ewart 2005a).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view narrowing towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; no mid lateral tooth, rounded; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 124f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa of male gently and evenly curved; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest, sometimes nearly equal; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 124f) with 6 apical cells; infuscation present at distal end of vein 2A and adjacent part of ambient vein; infuscation absent from ambient vein ignoring region in vicinity of vein 2 A ; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 124e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbals with 3 long ribs spanning the full height of the timbal (and 1 or 2 others not so long), spanning the full height of the timbal, spaced with intermediate short ribs; basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so and not broadly rounded; timbals not extended below wing bases.

Male genitalia (Figs 124a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge', entirely fleshy; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for their entire length, in lateral view aligned with thecal shaft for much of its length with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Very small cicadas (Pl. 2, fig. 3). Distinguished from all other Australian genera except Caliginopsalta by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, the paranota confluent with adjoining sclerites of the pronotum, no mid lateral tooth on the paranotum and the hind wing ambient vein infuscated in the vicinity of vein 2 A .

Clearly differs from Pauropsalta in the male genitalia which lack the very large upper pygofer lobes so characteristic of Pauropsalta. Further, the aedeagus has a typically 'trifid' theca exposing a fleshy endotheca, and the aedeagal hinge lacks a chitinous back and is entirely fleshy.

FIGURE 124. Genus Caliginopsalta Ewart: (a) C. percola Ewart, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, male operculum; (f) the same, fore and hind wings; (g) generic distribution.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Ewart (2005a) provides detailed notes on the single described species in this genus including an analysis of its song.

Genus CHELAPSALTA gen. n.

Type species: Cicada puer Walker, 1850 (Pl. 2, fig. 5).
Included species: AUSTRALIAN: puer (Walker, 1850), comb. n.. OTHERS: none.
Etymology. From the Greek chelo, meaning claw and referring to the claw-like claspers of the male genitalia, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 125e): The mountains of south-eastern Queensland south from the Bunya Mountains, the mountains of northern New South Wales, near Cobar in western New South Wales, eastern Victoria on the Mitchell River (Dunn 1991) and upper Snowy River, and in South Australia in the vicinity of Adelaide.

Diagnosis. Head including eyes about as wide or wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view narrowing towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum; metanotum partly visible at dorsal midline. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscations usually at bases of apical cells 2 and 3 but sometimes absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings usually with 6 apical cells but sometimes 5 (often only in one wing); no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting; base (remnant of epimeron 3) normal. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites $3-7$; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 125a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft curved in a

FIGURE 125. Genus Chelapsalta gen. n.: (a) C. puer (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution.
gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from all other Australian genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, hind wings with 6 apical cells, paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth, a pronotum that narrows towards the posterior and eyes that are large (together making about half the width of the head). The single species currently known from this genus has a characteristic silvery dorsal midline along the abdomen (Pl .2 , fig 5).

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and claspers that are claw-like with diverging distal ends.

Distinguished from the closely allied Simona sancta by the shape of the pronotum that narrows towards the posterior. Further, the male of S. sancta has abdominal segment 2, where it forms the posterior margin of the timbal cavity, very angular; that of C. puer is very rounded.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Chelapsalta puer is very similar morphologically to Simona sancta, the only notable difference being the shape of the pronotum; that of C. puer narrows towards the posterior, that of S. sancta widens towards the posterior. Molecular studies by Hill, Marshall, Simon, et al. (pers. comm.) support the generic separation of these two species because at least one other well defined genus separates them phylogenetically. It is for this reason I place them here in separate genera. Further notes on molecular relationships of C. puer are provided by Arensburger, et al. (2004a) and Buckley, et al. (2002). Notes on seasonality are provided by Coombs (1996). Notes on habitat are provided by Popple \& Strange (2002).

Genus CHLOROCYSTA Westwood

Cystosoma (Chlorocysta) Westwood, 1851: 208; Walker, 1852: 1133.
Chlorocysta Stål, 1863a: 575; Marschall, 1873: 358; Distant, 1882: 125; Distant, 1892: 151; Kirby 1896: 458; Goding and Froggatt, 1904: 566, 596, 658; Distant, 1905f: 213, 215; Distant, 1906d: 153, 159; Froggatt, 1907: 352; Horváth 1913: 429; Handlirsch, 1925: 1116; Tillyard, 1926: 161; Schulze, Kükenthal and Heider, 1926-40: 668; Imhof, 1929: 794; Myers, 1929b: 134; Kato, 1932: 15, 184, 185; Imhof, 1933: 306; Neave, 1939a: 707; Orian, 1954: 233; Kato, 1956: 70, 79, 84; Burns, 1957: 643; Boulard, 1979a: 35; Duffels and van der Laan, 1985: 248; Moulds, 1990: 185; de Boer, 1990: 64; de Boer, 1991: 2, 3; de Boer, 1992a: 164; de Boer, 1992b: 18, 19, 20, 22; de Boer, 1993a: 16, 17, 18; de Boer, 1993b: 142; de Boer, 1994a: 3; de Boer, 1995a: 4, 8, 24; de Boer, 1995b: 214, 215; de Boer, 1995c: 2, 6; de Boer, 1995d: 218, 219, 222, 224, 225, 233; de Boer, 1996: 352, 354; de Boer and Duffels, 1996a: 155, 168, 170, 171; de Boer and Duffels, 1996b: 301, 304, 314; de Boer, 1997: 91, 92, 93, 96, 97, 98, 107, 109; Moulds, 2005a: 390, 413, 430, 435.
Mardalana Distant, 1905f: 213, 215; Distant, 1906d: 154, 159; Horváth, 1913: 429; Ashton 1914a: 351; Schulze, Kükenthal and Heider, 1926-40: 1970; Kato, 1932: 184; Neave, 1940a: 43; Burns, 1957: 643; Metcalf, 1963: 257; Duffels and van der Laan, 1985: 249; Moulds, 1990: 185.
Mardarana [sic] Kato, 1932: 185; Kato, 1956: 70.
Mardalena [sic] Boulard, 1979a: 46.
The type species of Chlorocysta and Mardalana are synonymous, thus Mardalana falls as a junior objective synonym of Chlorocysta (Moulds, 1990: 185).

Type species: Cystosoma (Chlorocysta) vitripennis Westwood, 1851, by monotypy.
Included species: AUSTRALIAN: fumea (Ashton, 1914), suffusa (Distant, 1907), vitripennis (Westwood, 1851). OTHERS: none.

Distribution (Fig. 126j): North-eastern Queensland, south-eastern Queensland and the North Coast of NSW and introduced to Sydney (Moulds 1990).

FIGURE 126. Genus Chlorocysta Westwood: (a) C. vitripennis (Westwood), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, underside of male body showing opercula; (f) the same, right fore wing; (g)the same, right hind wing; (h) C. suffusa (Distant), male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate nearly meeting eye; postclypeus transversely angulate along ventral midline; cross-section, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 126f) hyaline; with 12 apical cells (sometimes 11 or 13 if aberrant, but usually so only in one wing); a series of approximately 6 subapical cells; ulnar cell 3 substantially parallel to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma absent; vein CuA nearly straight so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1 A fused in part; infuscation absent; wing outer margin narrow but developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 126g) with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 126e) distant from lateral margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically tapering to a blunt point, inner margin straight, clearly not meeting. Male abdomen (Fig. 126e) markedly inflated and almost entirely hollow; tergites in cross-section with sides concave, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs many and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view in lateral view timbals extended below wing bases.

Male genitalia (Figs 126a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 126h) with accessory glands long.

Female reproductive system (Fig. 126i) ditrysian; length of accessory glands long.
Distinguishing characters. Small to medium-sized cicadas. Differs from all other genera in having a combination of fore wings with 12 apical cells (11 or 13 if aberrant, but usually so only in one wing), a series of subapical cells and a narrow margin, and hind wings normally with 5 apical cells (6 or 4 if aberrant, but rarely aberrant in more than one wing). The wing venation is clearly unlike that of any other Australian genus except Glaucopsaltria, which differs in normally having 13 fore wing apical cells and 6 hind wing apical cells. Males also differ from Glaucopsaltria in having tergite 7 similar in size to its other tergites whereas that of Glaucopsaltria is greatly enlarged.

The claspers of the male genitalia are well developed, claw-like with diverging apices; the theca is S-shaped and typical of the Chlorocystini.

Discussion. De Boer (1995b) defined this genus and discussed its phylogenetic relationships. Phylogenetic relationships are also documented in Moulds (2005a) in a cladistic analysis. Moulds (1990) summarises the known distributions and biology of the Australian species. Ewart (1995) provides notes on C. vitripennis and a song analysis.

Genus CHRYSOCICADA Boulard

Chrysocicada Boulard, 1989: 67-68; Boulard, 1990: 238; Moulds, 2005a: 377, 392, 430, 437.
Type species: Chrysocicada franceaustralae Boulard, 1989, by original designation (Pl. 1, fig. 5).

Included species: AUSTRALIAN: franceaustralae Boulard, 1989. OTHERS: none.

FIGURE 127. Genus Chrysocicada Boulard: (a) C. franceaustralae Boulard, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, underside of male body showing opercula; (f) the same, right fore wing; (g) the same, right hind wing; (h) generic distribution.

Distribution (Fig. 127h): Far western Kimberley region, Western Australia (Boulard 1989, 1990).
Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 127f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA nearly straight so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 127g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 127e) tending to be linear, both outer and inner margins straight, distal margin broadly rounded, reaching distal margin of tympanal cavity, not meeting. Male abdomen (Fig. 127e) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section flat except for upwardly tilted margin. Timbal covers absent; timbal ribs many and regular in size and closely spaced filling entire timbal area apart from small basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 127a-d). Pygofer with distal shoulders not developed; upper lobes tending to be flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent. Uncus absent. Claspers large, dominant, widely separated, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view basally divided into two discs with apical arms lobe-like; basal portion of basal plate directed forwards away from thecal shaft; ventral rib rod-like with attachment only at ends; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through some 1400; pseudoparameres absent; thecal ventral surface lacking chitinization for its length; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system unknown.
Distinguishing characters. Small cicadas. The uniformly light ochre body coloration with greenish tinges (Pl . 1, fig. 5), together with the separation of fore wing veins M and CuA at the basal cell, and relatively short fore wing apical cells (compared to ulnar cells), clearly separate Chrysocicada from any other Australian genus. The male aedeagus is very distinct; the apex of the theca is forked and terminates in a pair of stout, fleshy, pointed lobes and its ventral surface lacks sclerotization.

Discussion. Phylogenetic relationships are documented by Moulds (2005a) in a cladistic analysis. Boulard (1989) considers Chrysocicada to be allied to Quintilia Stål but gives no reason for this decision except that "it differs in the shape of the abdomen and that of the genitalia". Notes on the biology and song of C. franceaustralae are provided by Boulard $(1989,1990)$.

Genus CICADETTA Kolenati

Type species: Cicada montana Scopoli, 1772, by subsequent designation.
Boulard $(1988,1998)$ and Moulds (1988) concluded that the authorship and date of publication of the genus Cicadetta originates from Amyot (1847). However, subsequently the International Commission on Zoological Nomenclature suppressed Amyot's 1847 work (Opinion 2165) making the names in it unavailable for nomenclatorial purposes. The name Cicadetta now dates from Kolenati (1857). The type species of Cicadetta, C. montana Scopoli, remains unchanged.

Included species: AUSTRALIAN: none; all Australian species either fall into synonymy or are here transferred to other genera (see below). OTHERS: many species occurring in all faunal regions except the Neotropics.

New synonymies: The following names fall into synonymy. capistrata (Ashton), see Taurella forresti (Distant) fulva (Goding and Froggatt), see Birrima castanea (Goding and Froggatt) murrayensis (Distant), see Plerapsalta incipiens (Walker) nebulosa (Goding and Froggatt), see Pauropsalta rubea (Goding and Froggatt) singula (Walker), see Plerapsalta multifascia (Walker) spreta (Goding and Froggatt), see Gelidea torrida (Erichson) subgulosa (Ashton), see Simona sancta (Distant) sulcata (Distant, 1907), see Taurella froggatti (Distant) warburtoni (Distant), see Taurella forresti (Distant)

Excluded species: All Australian species currently included in Cicadetta are here transferred to other genera as follows.
aaede (Walker, 1850) to Yoyetta gen. n.
abdominalis (Distant, 1892) to Yoyetta gen. n.
adelaida (Ashton, 1914) to Clinopsalta gen. n.
apicata (Ashton, 1914) to Kobonga
arenaria (Distant, 1907) to Sylphoides gen. n.
binotata (Goding and Froggatt, 1904) to Myopsalta gen. n.
brevis (Ashton, 1912) to Ewartia gen. n.
celis Moulds, 1988 to Yoyetta gen. n.
convergens (Walker, 1850) to Physeema gen. n. crucifera (Ashton, 1912) to Myopsalta gen. n. cuensis (Distant, 1913) to Ewartia gen. n. denisoni (Distant, 1893) to Yoyetta gen. n. forresti (Distant, 1882) to Taurella gen. n. froggatti (Distant, 1907) to Taurella gen. n. graminis (Goding and Froggatt, 1904) to Neopunia gen. n. hackeri (Distant, 1915) to Telmapsalta gen. n. hermannsburgensis (Distant, 1907) to Erempsalta gen. n. hunterorum Moulds, 1988 to Yoyetta gen. n. incepta (Walker, 1850) to Yoyetta gen. n. incipiens (Walker, 1850) to Plerapsalta gen. n. issoides (Distant, 1905) to Noongara gen. n. juncta (Walker, 1850), not Australian, see below. labeculata (Distant, 1892) to Galanga gen. n. labyrinthica (Walker, 1850) to Physeema gen. n. lactea (Distant, 1905) to Myopsalta gen. n. landsboroughi (Distant, 1882) to Yoyetta gen. n. latorea (Walker, 1850) to Physeema gen. n. mackinlayi (Distant, 1882) to Myopsalta gen. n. melete (Walker, 1850) to Pyropsalta gen. n. minima (Goding and Froggatt, 1904) to Punia gen. n. mixta (Distant, 1914) to Platypsalta gen. n. multifascia (Walker, 1850) to Plerapsalta oldfieldi (Distant, 1883) to Ewartia gen. n. polita Popple, 2003 to Heliopsalta gen. n. puer (Walker, 1850) to Chelapsalta gen. n. quadricincta (Walker, 1850) to Physeema gen. n. sancta (Distant, 1913) to Simona gen. n. spinosa (Goding and Froggatt, 1904) to Auscala gen. n. stradbrokensis (Distant, 1915) to Limnopsalta gen. n.
tigris (Ashton 1914) to Clinopsalta gen. n.
toowoombae (Distant, 1915) to Yoyetta gen. n.
torrida (Erichson, 1842) to Gelidea gen. n.
tristrigata (Goding and Froggatt, 1904) to Yoyetta gen. n.
viridis (Ashton, 1912) to Taurella gen. n.
waterhousei (Distant, 1905) to Myopsalta gen. n.

FIGURE 128. Genus Cicadetta Kolenati: (a) C. montana (Scopoli), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom.

Distinguishing characters. Small cicadas. The stems of fore wing veins M and CuA leave the basal cell adjacent to one another, but not fused as one. Male genitalia (Figs 128a-d) provide the definitive characterisation: the basal lobes of the male pygofer are not rounded lobes but wall-like extensions of the pygofer, and the pseudoparameres of the aedeagus are exceedingly long, surpassing the distal end of the theca by about half its length.

No Australian species fulfills these criteria.
Discussion. The genus Cicadetta, until relatively recent times, has been loosely defined and used to accommodate many species of Cicadettini that did not fit within other genera of the tribe. The Australian species currently placed in Cicadetta were included as a direct consequence of this approach. The placement of most precedes the catalogue of Goding and Froggatt (1904) and few have received consideration since. Further, the genus Melampsalta Kolenati also fell within the definition of Cicadetta and for many years the two names were considered synonymous. There was also confusion concerning the type species of both Cicadetta and Melampsalta and their priority in synonymy. Consequently some authors believed Melampsalta to be the senior synonym, others the junior. There is now wide acceptance that these genera are not synonymous but each a legitimate genus. Australian species were temporarily retained in Cicadetta (Moulds 1990) as none was found to belong to Melampsalta; some closely resembled Cicadetta while some represented new genera (Moulds 1988). Here all Australian species in Cicadetta are transferred to other genera, mostly to new genera described in this work.

The type species of Cicadetta, C. montana, is included in the phylogenetic analysis of Moulds (2005a).

Review of selected species

Cicadetta juncta (Walker)

Cicada juncta Walker, 1850: 176
Melampsalta juncta (Walker): Stål, 1862: 484
Cicadetta juncta (Walker): Metcalf, 1963: 321

Type: Holotype female, bearing handwritten label 'C. juncta Walker.', printed label '817' and printed circular label edged green 'Type'. Examined.

Walker's original description gives the locality as unknown and the type bears no locality label. However, Burns (1957) included the species in his catalogue of Australian cicadas and added the locality "Austr." but without providing an explanation for doing so. Moulds (1990) included the species as doubtfully from Australia. This species is known only from the type specimen.

Within the Australian fauna the size, uniform green colouration and general appearance of Cicadetta juncta is closest to Taurella viridis (Ashton), Ewartia cuensis (Distant), Pipilopsalta ceuthoviridis Ewart and Erempsalta hermannsburgensis (Distant). C. juncta differs from Taurella viridis in the length of the fusion of fore wing veins M and CuA which is much shorter, the fore wing basal membrane which is orange rather than grey and the eyes protrude less from the head. It differs from Ewartia cuensis in its much smaller size (fore wing length 16.8 mm compared to 19 mm for the smallest E. cuensis), and its more rounded fore wing shape. It differs from P. ceuthoviridis in its lager size (fore wing length 16.8 compared to the largest P. ceuthoviridis of about 15 mm) and its shorter ovipositor. For the most part C. juncta is significantly smaller than Erempsalta hermannsburgensis, the body is more slender and less robust and mostly the head is broader with E. hermannsburgensis having a head narrower than the mesothorax. Nor does it match some other green cicadas found in Australia that remain undescribed. On balance it is unlikely that C. juncta belongs to the Australian fauna and I exclude it from this review.

Genus CLINATA gen. n.

Type species: Pauropsalta nodicosta Goding and Froggatt, 1904 (Pl. 2, figs 16a, 16b).

Included species: AUSTRALIA: nodicosta (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. From the Latin clinatus meaning bent or sloping and referring to the bent fore wing costa. Feminine.

Distribution (Fig. 129j): Known only from Kalgoorlie, Western Australia (Moulds 1990).
Diagnosis. Head including eyes wide, clearly wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Figs $129 \mathrm{f}, \mathrm{h}$) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa with a characteristic nodule-like swelling a little proximal of node giving costa an angular appearance, costa of male strongly bowed on distal half; pterostigma present; vein CuA strongly bowed in male, nearly straight in female but cubital cell in both larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell very long (about equal to or longer than distance from its apex to wing tip); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Figs 129g, i) with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 129e) small, very narrow, development towards abdominal midline, far from distal margin of tympanal cavity, far from meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 129e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbal ribs effectively absent and timbals probably non-functional; basal dome large; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals small, not extended below wing bases.

9

FIGURE 129. Genus Clinata gen.n.: (a) C. nodicosta (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, underside of male body showing opercula; (f) the same, female fore wing; (g) the same, female hind wing; (h) the same male fore wing; (i) the same, male hind wing; (j) generic distribution.

Male genitalia (Figs 129a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, moderately tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view as long as or longer than broad, apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; large, visible in lateral view; thecal shaft straight; pseudoparameres present, dorsal of theca and originating distal of, but near, thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, very long (about as long as pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesicle opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small, dominantly black cicadas (Pl. 2, figs 16a, 16b). Clearly distinguished from all other Australian genera except Toxala by the angular fore wing and the characteristically swollen costa proximal of node. Unlike Toxala, fore wing ulnar cells 1-3 are all similar in length, and the hind wings have 5 apical cells (4 or 6 if aberrant). Male timbals are small with the ribs effectively absent leaving only the basal plate. The timbal cavities do not extend below the level of the wings. The male opercula are also greatly reduced.

The male genitalia possess a distinctive aedeagus with 'trifid' theca exposing a fleshy endotheca, but which has exceedingly long pseudoparameres and an exceedingly long ventral support that almost reaches the distal ends of the pseudoparameres; the only other genus within the Australian fauna possessing a similar aedeagus is Toxala.

Discussion. The phylogenetic relationships of this genus have been documented by Moulds (2005a) in a cladistic analysis and in the introductory section of this paper.

Genus CLINOPSALTA gen. n.

Type species: Melampsalta adelaida Ashton, 1914 (Pl. 1, figs 3a, 3b).
Included species: AUSTRALIAN: adelaida (Ashton, 1914), comb. n., tigris (Ashton, 1914), comb. n. OTHERS: none.

Etymology. From the Latin clino meaning bend and referring to the bent fore wing costa of the type species, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 130e): South-eastern Australia south from Horrocks Pass to Inglewood in central Victoria (Moulds, 1990).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, usually with a mid lateral tooth but missing in some individuals; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than R+Sc; costa parallel-sided to node, costa of male strongly bowed on distal half; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP

FIGURE 130. Genus Clinopsalta gen. n.: (a) C. adelaida (Ashton), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution.
and 1A fused in part; distance between cross veins and r-m much less than distance between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell shorter than the distance from its apex to wing tip; infuscation either absent or present on crossveins r and r-m; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long,
separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in crosssection with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII convex in cross-section, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases. Timbal covers absent.

Male genitalia (Figs 130a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, narrow in lateral view, the outer face with an overhanging lip along margin; fused around midlength; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, fused around midlength, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished by having the combination of fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the paranota having a small mid lateral tooth, the fore wing costa strongly bowed on distal half (Pl . 1, figs 3a, 3b), and the timbals with 3 long ribs spanning the full height of the timbal (plus 1 or 2 others not so long).
The male genitalia an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, but the claspers are fused at about midlength; in lateral view the claspers are essentially flat, narrow in lateral view and with an overhanging lip along their outer margin.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Genus CROTOPSALTA Ewart

Crotopsalta Ewart 2005a: 441-442.
Type species: Crotopsalta plexis Ewart, 2005, by original designation (Pl. 2, fig. 2).
Included species: AUSTRALIAN: fronsectes Ewart, 2005; leptotigris Ewart, 2009; plexis Ewart, 2005; poaecetes Ewart, 2005; strenulum Ewart, 2005. OTHERS: none.

Distribution (Fig. 131g): Northern-western Queensland from around Cloncurry and Dajarra, south-western Queensland in the north-eastern Simpson Desert, eastern Queensland south from the Mackay district and inland as far as Barcaldine and in New South Wales near Warialda (Ewart 2005a, 2009b).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and
'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 131f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costa costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 131f) with 6 apical cells except in leptotigris that has 5; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 131e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; not extended below wing bases; timbal covers absent.

Male genitalia (Figs 131a-d). Pygofer in ventral view very wide across upper lobes and thereafter strongly tapered to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak with no spine or pointed apex, completely straight or broadly curved across apical region. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus typically 'trifid' with an exposed endotheca, a basal plate that in lateral view is undulated, weakly depressed on dorsal midline, while in dorsal view is exceedingly short, almost without length and apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak lacking a spine or apical point, completely straight or broadly curved across apical region. Female reproductive system unknown.

Distinguishing characters. Small to very small cicadas (Pl. 2 fig. 2). Distinguished from all other genera by having a combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, the paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth, and the male pygofer having no dorsal beak or apical point.

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, a very short basal plate, and claspers that are essentially flat and narrow in lateral view with an overhanging lip along the margin and that are distally parallel to each other in ventral view.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Figures of adults and notes on the distribution, habitat, behaviour and a detailed analysis of the song for all species except C. leptotigris are included in Ewart (2005a). Similar details for C. leptotigris can be found in Ewart (2009b) together with a key to all described species.

FIGURE 131. Genus Crotopsalta Ewart: (a) C. plexis Ewart, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) left male operculum (f) the same, fore and hind wings; (g) generic distribution.

Genus CYCLOCHILA Amyot and Serville

Cyclochila Amyot and Serville, 1843: 470; Westwood, 1843: 33; Agassiz, Erichson and Germar, 1846: 4; Blanchard, 1846: 494; Agassiz, 1848: 316; Spinola, 1850: 50; Walker, 1850: 44, 258; Desmarest, 1859: 203; Dohrn, 1859: 72; Stål, 1862b: 18; Stål, 1866a: 3; McCoy, 1880: 57; Distant, 1882: 125; Distant, 1892: 100; Kirby, 1896: 458; Kirkaldy, 1903b: 232; Distant, 1904a: 302, 303; Goding and Froggatt, 1904: 564, 567, 569; Imhof, 1905: 218, 223; Distant, 1906b: 148; Distant, 1906d: 27; Froggatt, 1907: 349; Ashton, 1912b: 23; Distant, 1912a: 22; Ashton, 1921: 92; Delétang, 1923: 611; Handlirsch, 1925: 1117; Schulze, Kükenthal and Heider, 1926-40: 872; Myers, 1929b: 123, 135; Kato, 1932: 9, 153; Neave, 1939a: 916; Metcalf, 1944: 153; Kato, 1956: 66, 79; Burns, 1957: 614; Burns, 1959; 39-44, pl. V; Metcalf, 1963: 145, Boulard, 1965: 800; Aidley and White, 1969: 182; Matsuda, 1970: 248, 267; Young, 1973; 378; Duffels and van der Laan, 1985: 51; Moulds, 1990: 61; Moulds, 2005a: 377, 387, 391, 413, 414, 423, 430-432.
Cyclochida [sic]; Ashton, 1914a: 346 (misspelling).
Cychlochila [sic]; Cooper, 1941: 295 (misspelling).
Type species: Tettigonia australasiae Donovan, 1805, by monotypy.
Included species: AUSTRALIAN: australasiae (Donovan, 1805), virens Distant, 1906. OTHERS: none.
Distribution (Fig. 133j): North-eastern Queensland and south-eastern Queensland through eastern NSW and Victoria to the far south-eastern corner of South Australia (Moulds 1990, Haywood 2006a).

Diagnosis. Head including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline very broad, equal to width of lateral angles, underside of lateral angles with a ridged 'file' (Fig. 133a); paranota strongly ampliate, evenly rounded, horizontal in lateral view, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 133f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; C and $\mathrm{R}+\mathrm{Sc}$ widely separated; costal margin anterior of costa strongly ampliate, reducing to node; pterostigma present; vein CuA straight so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein mcu so that proximal portion longest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein; basal sclerite ridged forming a scraper to interconnect with corresponding file on underside of pronotal collar (Fig. 132b). Hind wings (Fig. 133g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 133e) covering rim of distal margin of tympanal cavity, broadly rounded, reaching beyond level of tergite 2, overlapping. Male abdomen (Fig. 133e) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; sternites IV-VI in cross-section convex. Timbal covers present, flat, reduced dorsally and not quite reaching metathorax, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 133a-d). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer (sometimes lacking in C. australasiae). Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short; base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 133h) with accessory glands long.

Female reproductive system (Fig. 133i) ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Large cicadas. Cyclochila shows a number of clear differences from all other Australian genera. It is unique amongst the Cicadoidea in having a stridulatory mechanism with a ridged file on the

FIGURE 132. Cyclochila australasiae (Donovan): (a) stridulatory file on underside of lateral angles of pronotal collar; (b) stridulatory scraper on fore wing base.
underside of the lateral angle of the pronotal collar that engages with a ridged scraper on the base of the fore wing to produce an audible sound (Figs 132a, b) (Moulds, 2005a: 414). The wide separation of C and R+Sc on the fore wing is unknown in all other Australian genera except Tettigarcta. Cyclochila also differs from all other Australian genera in clearly having the most distal part of the basal cell at the departure point of CuA . The male meracanthus is rudimentary and worm-like. The male reproductive system is extraordinary for its exceedingly long vas deferens and accessory glands which measure 320 mm and 270 mm respectively.

The two known species are usually leaf green in colour but sometimes yellow or orange. C. australasiae has additional colour forms including tan, turquoise and a distinctive form with a black abdomen and other black markings (Moulds 1990).

Discussion. Phylogenetic relationships of the genus are discussed in Moulds (2005a). Cyclochila is the sole representative of the tribe Cyclochilini. The wide separation of fore wing veins C and $\mathrm{R}+\mathrm{Sc}$, which is so pronounced in this genus (Fig. 133f) occurs infrequently in Cicadoidea. A perusal of some 200 world genera at my disposal revealed separation only in the African genera Yanga Distant and Pycna Amyot and Serville and in the Asian genera Trengganua Moulton and Tosena Amyot and Serville (T. montivaga Distant only), none of which is closely allied to Cyclochila. This assemblage of diverse genera all have a fore wing with a strongly ampliate costal margin anterior of the costa and all appear to be highly derived species.

Cyclochila is unique among the Cicadoidea in possessing a stridulatory file on the underside of the lateral angles of the pronotal collar that interacts with a scraper on the fore wing base (Fig. 132). Rubbed together these produce low audible sound in hand-held specimens (K. Hill, pers. comm.), the purpose of which is for sexual communication at close quarters (J. Kentwell and B. Fryz, pers. comm.).

The species of Cyclochila have been reviewed by Moulds (1990). Song analyses of C. australasiae are provided by Ewart (1986) and Josephson \& Young (1981). Discussion on acoustic mechanisms in C. australasiae are provided by Bennet-Clark (1997, 1999), Bennet-Clark \& Daws (1999) and Bennet-Clark \& Young (1992). Haywood (2006a) provides notes on the occurrence of C. australasiae in South Australia. Notes on seasonal occurrence and plant associations of C. australasiae in western Sydney are provided by Emery et al. (2005). Further notes on C. australasiae are provided by Coombs (1996) and Faithfull (2010).

Genus CYSTOPSALTRIA Goding and Froggatt

Cystopsaltria Goding and Froggatt, 1904: 566, 595, 661; Distant, 1905f: 213, 216; Distant, 1906d: 154, 160; Horváth, 1913: 427; Ashton, 1914a: 351; Schulze, Kükenthal and Heider, 1926-40: 909; Kato, 1932: 184, 185; Imhof, 1933: 306; Neave, 1939a: 955; Kato, 1956: 70; Burns, 1957: 644; Metcalf, 1963: 260; Duffels and van der Laan, 1985: 250; Moulds, 1990: 196; de Boer, 1992b: 18, 19; de Boer, 1993a: 16, 17; de Boer, 1993b: 141, 142; de Boer, 1995a: 8; de Boer, 1995b: 203, 204, 206, 207, 215, 218, 219; de Boer, 1995c: 2, 3; de Boer, 1995d: 218, 219, 222, 224, 225, 233, 234; de Boer, 1996: 350, 351, 352, 353, 354, 355; de Boer and Duffels, 1996a: 155, 168, 170, 171; de Boer and Duffels, 1996b: 301, 304, 314; de Boer, 1997: 91, 92, 93, 112, 113, 114, 119; Moulds 2005a: 390, 392, 413, 430, 435.

b

h

FIGURE 133. Genus Cyclochila Amyot and Serville: (a) C. australasiae (Donovan), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorso-lateral view; (e) the same, underside of male body showing opercula; (f) the same, fore wing; (g) the same, hind wing; (h) male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution. c costal vein, $R+S c$ radius plus subcostal veins.

Type species: Cystopsaltria immaculata Goding and Froggatt, 1904, by original designation.
Included species: AUSTRALIAN: immaculata Goding and Froggatt, 1904. OTHERS: none.
Distribution (Fig. 134g): North-eastern Queensland at Iron Range and from near Cooktown to Paluma (Moulds 1990).

Diagnosis. Head including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome narrower than long; epimeral lobe not reaching operculum. Fore wings (Fig. 134e) maculated, tegmen-like, green, yellow or blue; with multiple reticulation on outer half, bearing numerous cross veins; the majority of marginal cells are long and slender, being at least three times longer than wide; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; median vein with an additional anterior branch from very near or at the basal cell; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; veins CuP and 1A fused in part; infuscation absent; wing outer margin greatly reduced and mostly contiguous with ambient vein. Hind wings (Fig. 134f) usually with at least 10 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A almost straight, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, inner margin curved, clearly not meeting. Male abdomen markedly inflated, substantially hollow, obtuse; tergites in cross-section with sides concave, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs many, regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 134a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, near diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Medium to large cicadas. A very distinctive genus, similar in appearance only to Cystosoma. Body and fore wings usually green or rarely orange-yellow or turquoise. Fore wings leaf-like, opaque, with the majority of marginal cells long and slender, being at least $3 x$ longer than wide. Hind wing venation shows considerable abnormalities but usually there are 10 apical cells. Unlike Cystosoma, the fore wing median vein has a supernumerary branch arising at or close to the basal cell. The male abdomen is markedly inflated. The male genitalia are unique in having an aedeagus bearing a pair of dorsal subapical appendages that are usually knobbed.

Discussion. De Boer (1995b) defined this genus and discussed its phylogenetic relationships to other Cicadidae. Phylogenetic relationships are also documented by Moulds (2005a). Moulds (1990) summarises the known distribution and biology of the single species included in this genus.

Genus CYSTOSOMA Westwood

Cicada (Cystosoma) Westwood, 1842b: 118.
Cystosoma Agassiz, Erichson and Germar, 1842: 7; Amyot and Serville, 1843: 460; Westwood 1843: 33; Blanchard, 1846: 565; Agassiz, 1848: 332; Blanchard, 1848a: 82; Walker, 1850: 254; Walker, 1858a: 1; Desmarest, 1859: 203; Dohrn, 1859: 71; Gerstaecker, 1863: 299; Stål, 1863a: 574; Stål, 1866a: 3; Claus, 1876: 666; Claus, 1880: 751; Distant, 1882: 125, 133; Claus, 1884: 894; Ludwig, 1886: 463; Hansen, 1890: 56, 67; Karsch, 1890a: 85; Karsch, 1890b: 191; Distant, 1892: 145; Hansen, 1902: 215; Hansen, 1903: 43; Kirkaldy, 1903a: 215; Goding and Froggatt, 1904: 566, 595, 662; Distant, 1905g:

FIGURE 134. Genus Cystopsaltria Goding and Froggatt: (a) C. immaculata Goding and Froggatt, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution.

Type species: Cicada (Cystosoma) saundersii Westwood, 1842, by monotypy.
Included species: AUSTRALIAN: saundersii Westwood, 1842, schmeltzi, Distant, 1882. OTHERS: none.
Distribution (Fig. 135j): Eastern Queensland and NSW from the Cairns region to Gosford and introduced to Sydney and Lord Howe Island (Moulds 1990, Moulds and Hangay 1998).

Diagnosis. Head including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax (Fig. 135e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome narrower than long; epimeral lobe not reaching operculum. Fore wings (Fig. 135f) maculated, tegmen-like, green, yellow or blue; with multiple reticulation on outer half, bearing numerous cross veins; only a few marginal cells reach three times longer than wide, the majority much less; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting at basal cell but veins not aligned together; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; veins CuP and 1 A fused in part; infuscation absent; wing outer margin greatly reduced and in part contiguous with ambient vein. Hind wings (Fig. 135g) usually with 7 apical cells but abnormalities are common; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A weakly curved throughout its length, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, inner margin nearly straight, clearly not meeting. Male abdomen (Fig. 135e) markedly inflated, substantially hollow, obtuse; tergites in cross-section with sides concave, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs many, regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 135a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 135h) with accessory glands long.

Female reproductive system (Fig. 135i) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Medium to large cicadas, usually green or rarely orange-yellow or turquoise. A very distinctive genus, similar in appearance only to Cystopsaltria. Fore wings leaf-like, opaque, with reticulate venation on outer half and bearing numerous cross veins; only a few marginal cells reach 3 x longer than wide, the majority much less. Hind wing venation shows considerable abnormalities but usually there are 7 apical cells. The male abdomen is markedly inflated. Distinguished from Cystopsaltria by its much shorter fore wing marginal cells;

FIGURE 135. Genus Cystosoma Westwood: (a) C. saundersii Westwood, male genitalia, ventral view; (b) the same, male genitalia, lateral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, male head and body, lateral view; (f) the same, fore wing; (g) the same, hind wing; (h) the same, male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution.
those of Cystopsaltria are mostly 3 x longer than wide. Further, unlike Cystopsaltria the fore wing median vein lacks a supernumerary branch arising at or close to the basal cell.

Discussion. De Boer (1995b) defined this genus and discussed its phylogenetic relationships to other Cicadidae. Phylogenetic relationships are also documented by Moulds (2005a). Moulds (1990) summarises the known distribution and biology of Cystosoma species and the extensive literature concerning C. saundersii. Further notes and song analyses and biology are provided by Coombs (1996), Ewart (1995, 2001b) and Young (1972, 1973). Discussion and analyses of acoustic mechanisms in C. saundersii are provided by Bennet-Clark (1999) and BennetClark \& Young (1998).

Genus DICEROPYGA Stål

Cosmopsaltria (Diceropyga) Stål, 1870b: 708; Atkinson, 1886: 166; Distant, 1889: 43.
Cosmopsaltria (Diceropygia) [sic]; Atkinson, 1884: 226 (misspelling).
Diceropyga Distant, 1905a: 60, 67 (stat. nov.); Distant, 1906d: 48, 62; Oshanin, 1908: 388; Distant, 1912a: 38, 49; Oshanin, 1912: 95; Ashton, 1914a: 348; Distant, 1914d: 387; Distant, 1914b: 346; Matsumura, 1917: 198; Ashton, 1921: 104; Handlirsch, 1925: 1117; Kato, 1925a: 100; Kato, 1925b: 21; Kato, 1925c: 68, 70; Singh-Pruthi, 1925: 191; Schmidt, 1926: 219, 257; Schulze, Kükenthal and Heider, 1926-40: 978; Kato, 1927: 29; Schmidt, 1928: 108; Kato, 1931: 39, 40, 47, 60; Kato, 1932: 164, 166, 202, 217, 324, 333; Neave, 1939b: 69; Jacobi, 1941: 317; Kato, 1941: 55; Kato, 1944: 6; Esaki, 1947: 31; Kato, 1954: 43; Kato, 1956: 67, 76, 78, 79; Burns, 1957: 629; Metcalf, 1963: 633; Duffels, 1965: 371, 372; Overmeer and Duffels, 1967: 30, 31; Duffels, 1968: 79; Duffels, 1970: 9; Naruse and Nakane, 1971: 61, 62; Dugdale, 1972: 857; Hayashi, 1975: 282; Esaki and Miyamoto, 1975: 635, 637, 638, 651; Duffels, 1977: 1-227; Boulard, 1979b: 49; Duffels, 1979: 19-20; Holloway, 1979: 234-236; Duffels, 1982: 156, 159, 160; Duffels, 1983a: 2, 3, 10, 11, 19, 20, 40, 41, 42; Duffels, 1983b: 491-498; Duffels, 1985: 278, 279; Duffels and van der Laan, 1985: 60; Duffels, 1986: 320, 321, 322, 323, 325, 330, 331; Duffels, 1988b: 8; Moulds, 1990: 102; Duffels, 1990: 65; Duffels and de Boer, 1990: 260, 261, 262, 263, 265, 266; de Boer, 1992a: 168; de Boer, 1992b: 24, 25; de Boer, 1993b: 144, 145; Duffels, 1993: 1227, 1230, 1232; de Boer, 1994b: 90; de Boer, 1995d: 172, 173, 206, 207, 208, 217, 218, 219, 222, 223, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237; de Boer and Duffels, 1996a: 155, 165, 166, 169, 171, 172, 173; de Boer and Duffels, 1996b: 301, 304, 306, 307, 308, 313, 314, 315, 316, 318, 320; Duffels, 1997: 549, 551,552; Moulds 2005a: 387-389, 391, 394, 400, 407, 412, 413, 423, 430, 432, 433.

Type species: Tettigonia obtecta Fabricius, 1803, by subsequent designation by Distant, 1905a: 60, 67.
Included species: AUSTRALIAN: subapicalis (Walker, 1868). OTHERS: auriculata Duffels, 1977; aurita Duffels, 1977; bacanensis Duffels, 1988b; bicornis Duffels, 1977; bihamata Duffels, 1977; bougainvillensis Duffels, 1977; didyma (Boisduval, 1835); gravesteini Duffels, 1977; guadalcanalensis Duffels, 1977; junctivitta (Walker, 1868); major Duffels, 1977; malaitensis Duffels, 1977; noonadani Duffels, 1977; novaebritannicae Duffels, 1977; novaeguinae Distant, 1912a; obliterans Duffels, 1977; obtecta (Fabricius, 1803); ochrothorax Duffels, 1977; rennellensis Duffels, 1977; subjuga Duffels, 1977; tortifer Duffels, 1977; triangulata Duffels, 1977; woodlarkensis Duffels, 1977.

Distribution (Fig. 136h): Maluku, mainland New Guinea, Bismarck Archipelago, Solomon Islands and far north-eastern Australia (Duffels 1983a, 1983b, Duffels and de Boer 1990).

Diagnosis. Head including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'; transverse ridges on underside of postclypeus ending laterally in a file of 1-4 transverse, short, irregularly knobby ridges. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota marginally ampliate, mid lateral tooth present; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 136f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion longest; veins CuP and 1 A fused in part; infuscation overlaying veins at bases of apical cells $2,3,5$ and 7 , also at extremities of longitudinal veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 136g) with 6 apical cells; no infuscation on ambient vein; width of 1st

FIGURE 136. Genus Diceropyga Stål: (a) D. subapicalis (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, underside of male body showing opercula; (f) the same, fore wings; (g) the same, hind wing; (h) generic distribution in Australia. bl basal lobe, $l p$ lateral process, $u p$ upper lobe.
cubital cell at distal end about equal to 2 nd cubital cell; anal lobe narrow with vein 3 A straight or nearly so, short, adjacent to wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 136e) reaching far beyond tympanal cavity to cover some two thirds length of abdomen, clearly separated. Male abdomen (Fig. 136e) in cross-section with sides of tergites straight or weakly convex with distinct bend at lower third to the vertical, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; male sternites III-VII in cross-section convex. Timbal covers present, flat, fully rounded dorsally and extending to metathorax but not tightly closed, lower margin extending vertically from auditory capsule before turning anteriorly; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 136a-d). Pygofer with distal shoulders distally extended into pointed, and often apically up-turned, lobe (lateral process of Duffels 1977); upper lobes present; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present but as a flap on 'hinge' tissue. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant; accessory spines (claspers) present. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apically nearly square, deep depression on midline not reaching apex; basal portion of basal plate directed forwards away from thecal shaft; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex partly or entirely fleshy, as two long pointed appendages; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Medium-sized cicadas. Distinguished from other Australian genera by having the transverse ridges on the underside of the postclypeus ending laterally in a file of $1-4$ ridges. Further, the tooth on the lateral margin of the pronotal collar, in conjunction with a long narrow fore wing and a very narrow anal lobe to the hind wing, also separates Diceropyga from all other Australian genera. Males have very long opercula, those of the single Australian species reaching sternite 7, considerably longer than for any other Australian genus.

The lateral processes on the male pygofer (a development of the distal shoulder) are long and sharply pointed and reach beyond, sometimes far beyond, the anal styles and are characteristic of Diceropyga. The accessory spines (claspers) on the uncus are found in no other Australian genus.

Discussion. Duffels (1977) has revised the genus and discussed relationships with allied genera. The biogeography of the genus is discussed by Duffels (1977), Duffels and de Boer (1990), Duffels (1988a, 1988b), de Boer (1995d), de Boer and Duffels (1996a, 1996b). Phylogenetic relationships are also documented by Moulds (2005a). The distribution and biology of the single Australian species in this genus has been summarised by Moulds (1990) and Duffels (1977).

Genus DIEMENIANA Distant

Diemenia Distant, 1905f: 204, 206 (nec Diemenia Spinola, 1850); Schulze, Kükenthal and Heider, 1926-40: 995; Neave, 1939b: 85.
Diemeniana Distant, 1906d: 140, 145 (replacement name for Diemenia Distant, 1905); Ashton, 1912b: 24; Hardy, 1918: 70; Delétang, 1923: 627; Tillyard, 1926: 161; Schulze, Kükenthal and Heider, 1926-40: 995; Kato, 1932: 177, 178; Neave, 1939b: 85; Kato, 1956: 69; Burns, 1957: 640; Burns, 1958: 145-161; Dugdale and Fleming, 1969: 937; Dugdale, 1972: 861, 877, 878; Duffels and van der Laan, 1985: 226; Moulds, 1990: 112; Daley, 2007: 79; Moulds. 2005a: 377, 392, 423, 424, 430, 436.

Type species: Cicada coleoptrata Walker, 1850 [= Diemeniana frenchi (Distant, 1907)], by original designation.
Included species: AUSTRALIAN: cincta (Fabricius, 1803), comb. n.; euronotiana (Kirkaldy, 1909); frenchi (Distant, 1907); hirsuta (Goding and Froggatt, 1904); neboissi Burns, 1958. OTHERS: none.

Distribution (Fig. 137h): The mountains and South Coast of NSW south from the Gibraltar Range, the Brindabella Range and elsewhere in the ACT, through the eastern third of Victoria and Tasmania (Moulds 1990, Moss and Popple 2000), and in the south east of South Australia from Guichen Bay, Mt Burr Range and Dismal Swamp (Haywood 2006a).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, mid lateral tooth present; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Figs 137e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ much less than distance between $r-m$ and m except in euronotiana and frenchi; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation overlaying veins at bases of apical cells 2 and 3, infuscations elsewhere lacking; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 137f) with 6 apical cells; weak infuscation usually present at distal end of vein 2A; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, clearly separated. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites III-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 137a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed; restraining aedeagus; large, dominant, lobe-like, essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present and of medium length (no more than about half the length of pseudoparameres); thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca.

Male reproductive system (Fig. 137g) with accessory glands short.
Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Small cicadas with blackish, stout bodies and broad wings (approximately 2.4 x longer than wide). Distinguished from all other Australian genera by having the combination of fore wing veins M and CuA meeting the basal cell independently, a mid lateral tooth to the slightly ampliate paranotum, the fore wings broad with infuscations confined to the bases of apical cells 2 and 3 and an infuscation at the distal end of hind wing vein 2 A .

FIGURE 137. Genus Diemeniana Distant: (a) D. frenchi (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) male reproductive system, dissection with aedeagus removed from pygofer; (h) generic distribution.

Distinguished from the superficially similar genus Adelia in having the male opercula clearly separated (very close or meeting in Adelia). The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, thus differing from Adelia that has an endotheca that is clearly sclerotized.

Discussion. Phylogenetic relationships of this genus have been documented by Moulds (2005a) in a cladistic analysis and in the introductory section of this paper. The species of Diemeniana have been reviewed by Burns (1958) and Moulds (1990). Haywood (2006a) provides notes on the occurrence of the genus in South Australia. Further notes on the species in this genus are provided by Arensburger, et al. (2004a), Moss (1989), and Moss and Popple (2000).

Review of selected species

Diemeniana cincta (Fabricius), comb. n.

Tettigonia cincta Fabricius, 1803: 38.

Cicada cincta (Fabricius): Germar, 1830: 44.
Tibicen cinctus (Fabricius): Stål, 1870a: 7.
Abricta (?) cincta (Fabricius): Distant, 1906d: 131.
Diemeniana tillyardi Hardy, 1918: 69-70 Syn. n.
Abricta cincta (Fabricius): Duffels, 1977: 209.

Fabricius (1803) erroneously recorded Tettigonia cincta from Noua Cambria (= New Caledonia). The only known type (a syntype male in UZMC, ex University of Kiel collection, examined) is clearly the same species as Hardy's Diemeniana tillyardi (holotype male in AM, examined).

Diemeniana euronotiana (Kirkaldy)

Cicada aurata Walker, 1850: 215.
Tibicen(?) auratus (Walker): Atkinson, 1886: 178-179.
Tibicen auratus (Walker): Distant, 1892: 153.
Abricta aurata (Walker): Distant, 1906d: 130.
Abricta euronotiana Kirkaldy, 1909: 391 (replacement name for Cicada aurata Walker, 1850).
Diemeniana richesi Distant, 1913a: 488. Syn. n.
The only known type of D. richesi (a syntype male in BMNH) is a specimen of D. euronotiana with stained wings. A male and female of this species taken at Cooma and now in ANIC, ex WW Froggatt collection are possibly part of the original series; these specimens are also partly stained but not as much as the syntype male.

Genus DIPSOPSALTA gen. n.

Type species: Pauropsalta signata Distant, 1914 (Pl. 2, fig. 15).
Included species: AUSTRALIAN: signata (Distant, 1914), comb. n. OTHERS: none.
Etymology. From the Greek dipsa meaning dry, thirsty, and referring to the semi arid habitat of the type species, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 138f). Known only from Cue, Western Australia.
Diagnosis. Head including eyes about as wide or narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth. Cruciform elevation wider than long. Epimeral lobe not reaching operculum. Metanotum
partly visible at dorsal midline. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between r-m and m; apical cells shorter than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings usually with 5 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about twice that of 2 nd cubital cell; anal lobe narrow with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 138e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 138e) bulbous, broadest at about segment 2; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, unusually swollen so that each is partly visible in lateral profile. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 138a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears' and far broader than long; basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate, junction between theca and basal plate without a functional 'hinge'; thecal shaft nearly straight, parallel-sided, thick-set; pseudoparameres present, arising subapically, lateral of theca, fused for half their length or more, in dorsal view wide apart, diverging, in lateral view aligned with the thecal shaft with their distal portion turned down; endotheca concealed; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female abdominal segment 9 abbreviated and wider than long; dorsal beak with a developed apical spine or pointed apex (visible in dorsal view); ovipositor sheath not extended beyond apex of abdominal segment 9. Female reproductive system unknown.

Distinguishing characters. Small cicadas. Differs from all other Australian genera in having the combination of fore wing veins M and CuA completely fused as one, fore wing apical cells clearly shorter than the ulnar cells, a fore wing radial cell that is a little shorter than the distance from its apex to wing tip, and paranota that are confluent with adjoining pronotal sclerites and without a midlateral tooth. The abdomens of both sexes tend to be rather cylindrical (Pl. 2, fig. 15, female).

The male genitalia have an aedeagus that is thick-set, nearly straight and parallel-sided, the pseudoparameres are very short, broad, arise subapically and extend distal of the gonopore, and the endotheca is concealed.

Dipsopsalta is superficially similar to Pipilopsalta, Uradolichos and Mugadina because of the swollen male abdomen; it is distinguished from all three by the very short apical cells of the fore wing.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

FIGURE 138. Genus Dipsopsalta gen. n.: (a) D. signata (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male body showing opercula; (f) generic distribution.

Review of selected species

Dipsopsalta signata (Distant) comb. n.

Pauropsalta signata Distant, 1914c: 64.
Pauropsalta lineola Ashton, 1914a: 357. Syn. n.
Melampsalta lineola (Ashton): Burns, 1957: 656.
Melampsalta signata (Distant): Burns, 1957: 662.

The one known syntype male of signata in BMNH (examined) is clearly conspecific with the two syntype females of lineola in the SAM (examined). All three specimens were collected by H.W. Brown from Cue, Western Australia, and most likely collected together. Horace Brown was renowned for splitting his catches between Ashton and Distant, both of whom would then publish descriptions of any new species, inevitably creating synonymies. Further, there are two additional males in the SAM bearing identical data to that of the female syntypes but these may have reached Ashton after he published his description of the female.

Both Distant and Ashton published their descriptions in the same year. Investigations revealed that Distant's description was published in July and Ashton's in December, thus signata Distant takes priority.

Genus DRYMOPSALTA Ewart

Drymopsalta Ewart, 2005a: 481-483.

Type species: Drymopsalta crepitum Ewart, 2005, by original designation (Pl. 2 fig. 1).
Included species: AUSTRALIAN: crepitum, Ewart, 2005; daemeli (Distant, 1905). OTHERS: none.
Distribution (Fig. 139h): North-eastern Queensland on Cape York Peninsula from Punsand Bay in the far north, south almost to Cooktown and Normanton, and in New South Wales from Harrington near Taree to Sydney and the Blue Mountains (Ewart, 2005a; Moulds, 1990).

Diagnosis. Head including eyes about as wide as or a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 139f) hyaline; with 8 apical cells; apical cell 1 of usual proportions (half the length or more of apical cell 2), but often very small (far less than half the length of apical cell 2) in daemeli; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa slightly broader a little before node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest, but sometimes nearly equal; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell usually shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wing (Fig. 139g) with 5 or 6 apical cells (rarely 4); no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 139e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, almost parallel-sided, distally angular, and not rounded towards abdominal midline, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and

FIGURE 139. Genus Drymopsalta Ewart: (a) D. crepitum Ewart, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, left male operculum; (f) the same, fore wing; (g) the same, hind wing; (h) generic distribution.
one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 139a-d). Pygofer in ventral view very wide across upper lobes and thereafter tapered to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view) in daemeli, but in crepitum without a spine or apical point, completely straight or broadly curved across apical region; Female reproductive system unknown.

Distinguishing characters. Very small cicadas (Pl. 2, fig. 1). Distinguished from other Australian genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, paranota confluent with adjoining pronotal sclerites and male opercula that are almost parallel-sided, distally angular, and not rounded towards abdominal midline (Fig. 139e).

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and a pygofer that is very wide across the upper lobes and thereafter tapers strongly to the base.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Ewart (2005a) provides details on the type species, D. crepitum, including an analysis of its song. Moulds (1990) provides details on D. daemeli, then Urabunana daemeli. Notes on seasonal occurrence and plant association of D. daemeli in western Sydney are provided by Emery and Emery (2002), Emery et al. (2005).

Genus EREMPSALTA gen. n.

Type species: Melampsalta hermansburgensis [sic.] Distant, 1907 (Pl. 1, fig. 6).
Included species: AUSTRALIAN: hermannsburgensis (Distant, 1907), comb. n. OTHERS: none.
Etymology. From the Greek eremia meaning solitude, desert, wilderness, and referring to the arid and isolated locality from which the type species of this genus is recorded, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 140f): Known only from the type locality, Hermannsburg, Central Australia.
Diagnosis. Head including eyes clearly narrower than width of mesonotum between wings; eyes tending large, together occupying almost half the width of the head; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; apical cell very small; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly

FIGURE 140. Genus Erempsalta gen. n.: (a) E. hermannsburgensis (Distant), male genitalia, lateral view; (b) the same, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) underside of male body showing opercula; (f) generic distribution.
curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $r-m$ and m; api cal cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation either absent or confined to bases of apical cells 2 and 3 ; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect but tending semi-prostrate. Male hind leg meracanthus short. Male opercula (Fig. 140e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, not meeting. Male abdomen (Fig. 140e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites $3-7$; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 140a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of their length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, paranota that are confluent with adjoining pronotal sclerites with no mid lateral tooth, and eyes that are large and which together make up about half the width of the head. The single described species in this genus is almost entirely green (Pl. 1 fig. 6).
The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and claspers that are claw-like with diverging distal ends.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Note on spelling of type species

Erempsalta hermannsburgensis (Distant, 1907), comb. n. Melampsalta hermansburgensis Distant, 1907: 419. Melampsalta hermannsburgensis Ashton, 1914: 354; Burns, 1957: 653.
Cicadetta hermansburgensis Metcalf, 1963: (2) 317.
Cicadetta hermannsburgensis Moulds, 1990: 144.

Distant (1907) named this species after the type locality, Hermannsburg, but he appears to have not realised that the name is spelt with a double ' n '. It is obvious that Distant intended to name the species after the type locality because he uses the ending 'ensis' (a Latin suffix denoting a locality) and Hermannsburg is the only locality mentioned by Distant. Consequently, under Article 32.5.1 of the International Code of Zoological Nomenclature (fourth edition, 1999) the spelling should be corrected.

Genus EWARTIA gen. n.

Type species: Melampsalta oldfieldi Distant, 1883.
Included species: AUSTRALIAN: brevis (Ashton, 1912), comb. n.; cuensis (Distant, 1913), comb. n.; oldfieldi (Distant, 1883), comb. n. OTHERS: none.

Etymology. Named in honour of Dr Tony Ewart in recognition of his considerable contribution to our knowledge of Australian cicadas.

Distribution (Fig. 141e): Northern Queensland from Cape York Peninsula south almost to Cooktown, southeastern Queensland south from the Kerlong Range to north-eastern New South Wales inland as far as Lake Cargelligo and Broke, and from Cue in Western Australia (Ewart 1993, Moulds 1990).

Diagnosis. Head including eyes about as wide or wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells, rarely 5 in aberrant specimens and then usually only in one wing; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

FIGURE 141. Genus Ewartia gen. n.: (a) E. oldfieldi (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution.

Male genitalia (Figs 141a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal
lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of its length, with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, no fore wing infuscations, the fore wing costa evenly rounded, the paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth, and the posterior margin of the timbal cavity completely rounded.

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, the pseudoparameres are aligned with the thecal shaft for much of their length, while the claspers are essentially flat and wide in lateral view with an overhanging lip along the outer margin.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. The abbreviated abdomen of E. brevis is not considered significant in separating this species generically because there are other undescribed species belonging to Ewartia that have abdominal proportions intermediate between brevis, oldfieldi and cuensis. Notes on E. oldfieldi, including song analyses, are provided by Ewart (1988, 1995, 1998a) and Moulds (1990). Popple \& Strange (2002) provide notes on habitat.

Genus FROGGATTOIDES Distant

Frogattoides [sic] Distant, 1910: 417-18 (original misspelling); Schulze, Kükenthal and Heider, 1926-40: 1325; Neave, 1939b: 423.

Larrakeeya Ashton, 1912d: 77; Schulze, Kükenthal and Heider, 1926-40: 1769; Neave, 1939b: 870; Metcalf, 1944: 155.
Froggattoides Distant, 1913b: 601 (justified corrected spelling); Ashton, 1914a: 356; Burns, 1957: 666; Metcalf, 1963: 418; Dugdale, 1972: 877, 880; Duffels and van der Laan, 1985: 299, Moulds, 1990: 176; Moulds 2005a: 390, 414, 415, 430, 436.

Froggatoides [sic]; Heslop-Harrison, 1957: 52 (misspelling).
Type species: Froggattoides typicus Distant, 1910, by monotypy.
Included species: AUSTRALIAN: pallidus (Ashton, 1912); typicus Distant, 1910. OTHERS: none.
Distribution (Fig. 142i): Western half of Western Australia excluding the northern and southern parts of the region, and inland southern Queensland and the central part of northern NSW (Moulds 1990). The type locality for F. typicus, Stannary Hills in northern Queensland, is considered erroneous.

Diagnosis. Head (Fig. 142h) including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; very pilose both above and below; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long, lateral areas domed; epimeral lobe not reaching operculum; metathoracic spiracles exceedingly large, opening closed by a thin translucent
membrane and leading to a large thoracic cavity. Metanotum partly visible at dorsal midline. Fore wings (Fig. 142f) hyaline; with 8 or 9 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; anterior margin obtusely angled at node; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$, parallel-sided to node, gently and evenly curved in male; pterostigma present; vein CuA strongly bowed distally and cubital cell larger than medial cell; ulnar cell 3 exceedingly broad, its common margin with radial cell occupying about half its length; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 142g) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe very narrow with vein 3A straight, very short, adjacent to wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect; tarsi short, about one third length of tibiae. Male opercula (Fig. 142e) more or less reaching distal margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, concave along lateral margin, not meeting, strongly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 142e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbal ribs irregular in size, abutting; basal dome concealed by a very narrow compressed timbal cavity; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; auditory capsule very large, raised, hemispherical.

Male genitalia (Figs 142a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer not the widest point; pygofer with distal shoulders not developed; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short (about as long as broad), divided into two discs tilted to midline, bordered by anterior rim; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge', large, completely separating theca from basal plate, highly visible in lateral view, aedeagus with hinge entirely fleshy; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of its length and with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, long (about three quarters length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. A very distinctive genus of medium-sized to smallish cicadas, faded green in colour and with highly modified, bent fore wings. The angled fore wing anterior margin and exceedingly broad ulnar cell 3 (which has its common margin with the radial cell occupying half that cell's length) clearly characterise this genus. Further, the mesothoracic spiracular opening is exceedingly large, closed by a thin translucent membrane and leading to a large internal thoracic cavity, the auditory capsule is very large, raised and hemispherical, the lateral areas of the cruciform elevation are domed (rather than flat) and the tarsi are short, about one third the length of the tibiae (rather than about half). The hind wing anal lobe is also very narrow and the thorax both above and below is very pilose.

FIGURE 142. Genus Froggattoides Distant: (a) F. typicus Distant, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male body showing opercula; (f) the same, fore wing; (g) the same, hind wing; (h) the same, head dorsal view; (i) generic distribution.

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, except that the ventral support is very long (about three quarters the length of the pseudoparameres) and the basal hinge is developed to such an extent that it lacks a chitinized back.

Discussion. Phylogenetic relationships of this genus are documented by Moulds (2005a) in a cladistic analysis, and in the introductory section of this paper. The two described species of this genus, F. pallidus and F. typicus, are very similar in appearance but have one remarkable difference; pallidus has 9 fore wing apical cells while typicus has only 8 . Such a difference normally would suggest generic separation but these two species are otherwise very similar and with many unique attributes not found in other genera. In view of this very close similarity at species level and very different appearance from other cicadas I considered them best retained together in Froggattoides.

Notes on the distribution and biology of the species are provided by Moulds (1990). Further notes and analyses of the song and nocturnal behaviour of F. typicus are provided by Ewart (1998a) and Ewart \& Popple (2001, 2007).

Genus GAGATOPSALTA Ewart

Gagatopsalta Ewart, 2005a: 460.
Type species: Gagatopsalta auranti Ewart, 2005, by original designation (Pl. 2, fig. 4).
Included species: AUSTRALIAN: auranti Ewart, 2005; obscura Ewart, 2005. OTHERS: none.
Distribution (Fig. 143g): Inland south-eastern Queensland, from near Quilpie and through the brigalow belt south from Isla Gorge (Ewart, 2005a).

Diagnosis. Head including eyes wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 143e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m (in most specimens); apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 143e) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 143f) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites 3-7; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases.

Male genitalia (Figs 143a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, in lateral view abutted against or partly tucked behind pygofer margin; pygofer basal lobe in lateral view with much of distal margin a little protruding, angled, its margin straight or slightly incurved; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large,

FIGURE 143. Genus Gagatopsalta Ewart: (a) G. auranti Ewart, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore and hind wings; (f) the same, left male operculum; (g) generic distribution.
dominant, claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices very widely separated, forming the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft but gently curved down throughout its length, with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, the paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth, male abdominal tergite 1 narrow along dorsal midline, and the posterior margin of the timbal cavity ridged on its lower half or so. The type species of the genus has conspicuous orange colouration on the thorax and wing bases (Pl. 2, fig. 4).

The male genitalia an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, while the claspers are claw-like and diverging towards their distal ends so that their apices form the widest dimensions of the claspers.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis included in the introductory part of this paper. Ewart (2005a) provides details on the two described species in this genus including analyses of their songs.

Genus GALANGA gen. n.

Type species: Melampsalta labeculata Distant, 1892.

Included species: AUSTRALIAN: labeculata (Distant, 1892), comb. n. OTHERS: none.
Etymology. Galanga was the aboriginal name for cicadas used by tribes living in the vicinity of what is now Sydney. Feminine.

Distribution (Fig. 144g): South-eastern Queensland south from the Blackdown Tableland, the eastern margin of New South Wales, the Australian Capital Territory (S. Robertson), and north-eastern Victoria as far west as Moyhu (Faithfull 2010) and the Mitchell River (Dunn 1991).

Diagnosis. Head including eyes about as wide as or wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ much less than distance between $r-m$ and m; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation confined to bases of apical cells 2 and 3; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal

FIGURE 144. Genus Galanga gen. n.: (a) G. labeculata (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (f) the same, male reproductive system, dissection with aedeagus removed from pygofer; (g) generic distribution.
cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 144a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, tubular, tapering to a hooked beak-like distal end; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, pseudoparameres unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present; of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system (Fig. 144f) with accessory glands long.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system (Fig. 144e) ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Small cicadas. The fore wing veins M and CuA meet the basal cell with their stems completely fused as one; the fore wing cross veins r and r-m are much closer together than r-m and m; the fore wing infuscations are confined to the bases of apical cells 2 and 3, and the paranota are ampliate with a mid lateral tooth. These characters distinguish Galanga from all genera except Gelidea and some species of Kobonga, Clinopsalta and Physeema. Galanga is distinguished from these genera by the male genitalia which have claspers that are tubular, diverging, and tapering to hooked beak-like distal ends.
Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution, habitat and biology of the single species included in this genus are provided by Moulds (1990). Further notes on this species are provided by Coombs (1993b, 1996), Emery et al. (2005) and Faithfull (2010).

Genus GELIDEA gen. n.

Type species: Cicada torrida Erichson, 1842.

Included species: AUSTRALIAN: torrida (Erichson, 1842), comb. n. OTHERS: none.
Etymology. From the Latin gelidus meaning cold, frosty, icy, and referring to the cool temperate climate in which the type species is found. Feminine.

Distribution (Fig. 145e): Southern Victoria from Cape Otway to Wilsons Promontory, the islands of Bass Strait and Tasmania.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, usually with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical
cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA usually meeting basal cell with their stems completely fused as one but independently in some individuals; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ much less than distance between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation at bases of apical cells 2 and 3 (rarely absent); wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with two long ribs spanning the full height of the timbal; basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 145a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, essentially flat, wide in lateral view, outer face with an overhanging lip along margin; fused around midlength; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present; ventral support of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, the paranota with a small lateral tooth, and the timbals with two long ribs. Further, the hind wing plaga of the single species currently placed in this genus is pure white. The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, while the claspers are fused at about midlength, essentially flat, and wide with an overhanging lip along the outer margin.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution, habitat and biology of the single described species in this genus are provided by Moulds (1990). Further notes on the biology of this species can be found in Bashford (1997), Faithfull (2010) and Moss (1989).

FIGURE 145. Genus Gelidea gen. n.: (a) G. torrida (Erichson), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution.

Review of species

Gelidea torrida (Erichson), comb. n.

Cicada torrida Erichson, 1842: 286
Cicada basiflamma Walker, 1850: 170
Cicada connexa Walker, 1850: 173
Cicada damater Walker, 1850: 178
Melampsalta damater (Walker): Stål, 1862a: 484
Melampsalta torrida (Erichson): Goding and Froggatt, 1904: 631
Melampsalta spinosa Goding and Froggatt (male, not female): Goding and Froggatt, 1904: 635
Melampsalta spreta Goding and Froggatt, 1904: 647. Syn. n.
Cicadetta torrida (Erichson): Dugdale, 1972: 877, 878
Cicadetta (Tettigetta) torrida (Erichson): Boulard, 1991: 119
Cicadetta spreta (Goding and Froggatt): Metcalf, 1963: 388-389
Examination of the male holotype of spreta (in MV) and of the male and female syntypes of torrida (in MHUB) confirmed that they are conspecific. The holotype of spreta has red markings as described by Goding and Froggatt in their description of the species; these are usually absent in torrida, especially in males, but are sometimes present. I have material of torrida with red markings resembling those of the holotype collected with individuals entirely lacking, or almost lacking, such markings and it is likely that specimens with red are partly teneral.

Genus GLAUCOPSALTRIA Goding and Froggatt

Glaucopsaltria Goding and Froggatt 1904: 657; Schulze, Kükenthal and Heider, 1926-40: 1373; Neave, 1939b: 473; Moulds, 1990: 189; de Boer, 1992b: 18, 19, 20, 22; de Boer, 1993a: 16, 17; de Boer, 1993b: 142; de Boer, 1995a: 8; de Boer, 1995b: 204, 211, 214, 215; de Boer, 1995c: 2, 6; de Boer, 1995d: 218, 219, 222, 224, 225, 233; de Boer, 1996: 352, 354, 355; de Boer and Duffels, 1996a: 155, 168, 170, 171; de Boer and Duffels, 1996b: 301, 304; de Boer, 1997: 91, 92, 93, 96, 97, 98, 107, 109; Moulds, 2005a: 390, 413, 430, 435.
Glaucocysta [sic]; Goding and Froggatt 1904: 566 (misspelling).
Type species: Glaucopsaltria viridis Goding and Froggatt, 1904, by original designation.
Included species: AUSTRALIAN: viridis Goding and Froggatt, 1904. OTHERS: none.
Distribution (Fig. 146h): North-eastern Queensland near Cairns, the Mackay region in central Queensland and south-eastern Queensland to north-eastern NSW (Moulds 1990).

Diagnosis. Head (Fig. 146e) including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax (Fig. 146e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 146f) hyaline; with 13 apical cells (sometimes 12 or 14 if aberrant, but usually so only in one wing); a series of approximately 6 subapical cells; ulnar cell 3 substantially parallel to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma absent; vein CuA nearly straight so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1A fused in part; infuscation absent; wing outer margin narrow but developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 146 g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A gently curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula distant from lateral margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically tapering to a blunt point, inner margin straight, clearly not meeting. Male abdomen (Fig. 146e) markedly inflated, obtuse; tergites in cross-section with sides concave, epipleurites reflexed ventrally from junction with tergites; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs many, and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

FIGURE 146. Genus Glaucopsaltria Goding and Froggatt: (a) G. viridis Goding and Froggatt, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, male head and body, lateral view; (f) the same, fore wing; (g) the same, hind wing; (h) generic distribution. CuA_{1} first branch of cubitus anterior vein, m -cu mediocubital crossvein, $t 7$ tergite seven.

Male genitalia (Figs 146a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Medium-sized cicadas. Distinguished from all other genera by having the combination of a male abdomen that is markedly inflated, substantially hollow and obtuse, fore wings with 13 apical cells (sometimes 12 or 14 if aberrant, but usually so only in one wing) and hind wings with 6 apical cells. Males are clearly distinguished from the closely allied genus Chlorocysta by abdominal tergite 7, which is greatly enlarged in Glaucopsaltria (Fig. 146e).

Discussion. De Boer (1995b) defined the genus and discussed phylogenetic relationships. Phylogenetic relationships are also documented by Moulds (2005a). The distribution and biology of the single species in this genus has been summarised by Moulds (1990). Ewart (1995, 2001b) and Young \& Josephson (1983) provide further notes on biology and song analyses.

Genus GRAMINITRIGRINA Ewart and Marques

Graminitrigrina Ewart and Marques, 2008: 153-155.
Type species: Graminitigrina bowensis Ewart and Marques, 2008, by original designation (Pl. 2, fig. 7).
Included species: AUSTRALIAN: bolloni Ewart and Marques, 2008; bowensis, Ewart and Marques, 2008; carnarvonensis, Ewart and Marques, 2008; karumbae Ewart and Marques, 2008; triodiae Ewart and Marques, 2008. OTHERS: none.

Distribution (Fig. 147g): Queensland, from northern Cape York Peninsula and from the south-eastern coast of the Gulf of Carpentaria, though much of inland and eastern Queensland east as far as Bowen and south to near St George (Ewart and Marques 2008).

Diagnosis. Head including eyes a little narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal approximately view parallel-sided; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 147f) hyaline; with 8 apical cells; apical cells 3-6 about equal to or longer than ulnar cells; subapical cells absent; ulnar cell 3 angled to radial cell; radial cell long (about equal to distance from its apex to wing tip); basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; costa of male gently curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal and distal portions about equal (variable a little between individuals); veins CuP and 1 A fused in part; infuscation absent except in G. triodiae where weak infuscations are present in area of cross veins r and $\mathrm{r}-\mathrm{m}$ and around apical margin, and in G. carnarvonensis where weak infuscations are sometimes present on apical cells 1-6; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 147f) with 5 apical cells (sometimes 4 or 6 if aberrant); no infuscation on ambient vein except sometimes around distal end of 2 A ; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 147e) reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male

FIGURE 147. Genus Graminitigrina Ewart and Marques: (a) G. bowensis Ewart and Marques, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, left male operculum; (f) the same, fore and hind wings; (g) generic distribution.
abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex, swollen so that each is visible in lateral view; a little wider than thorax. Timbals usually 4 or 5 long ribs irregular in size and spaced with prominent intermediate short ribs; anterior part of timbal mostly occupied by ribs except in G. triodiae and to a lesser extent in G. bolloni; large basal dome; timbals not extended below wing bases; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbal covers absent.

Male genitalia (Figs 147a-d). Pygofer in ventral view sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes very flat, very large, dominating pygofer between basal lobes and dorsal beak, elongate and tending apically expanded like horse blinkers; basal lobes undivided, large, in lateral view very broad; dorsal beak usually present and a part of chitinized pygofer but very small, sometimes so reduced as to be absent. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large and dominant with sharply-pointed, hooked terminations; restraining aedeagus; unfused. Aedeagus with basal plate in lateral view arched with apical region upturned, deeply depressed on dorsal midline; in dorsal view T-shaped, as long or longer than broad; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate ridged and lacking a 'hinge'; thecal shaft curved in a gentle arc; pseudoparameres present, originating near thecal base, filiform or nearly so, lateral of theca and adjacent to thecal shaft throughout their length; endothecal ventral support absent; thecal apex sclerotised, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening dorsal on theca. Male reproductive system unknown.

Female dorsal beak small, but not the most distal part of abdominal segment 9. Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from most genera in having fore wing veins M and CuA with their stems completely fused as one, a long fore wing radial cell that is about as long as the distance from its distal end to wing apex, no mid lateral tooth on the paranotum, and a fore wing costa that is broadest a little before the node. Further, the male (Pl. 2, fig. 7) has an abdomen that is clearly wider than the thorax and sternites that are swollen so that at least part of each is visible in lateral view, while the female dorsal beak is small and does not extend beyond the most distal part of abdominal segment 9. Graminitigrina is most similar to Mugadina from which it differs significantly in the male genitalia which have very large upper pygofer lobes and pseudoparameres that are very long and arise near the base of the theca while those of Mugadina are short and arise subapically.

The male genitalia are distinctive in having the combination of a large blinker-shaped upper pygofer lobe, a large basal lobe, an auxiliary inward-facing 'tooth' immediately above the basal lobe and an aedeagus that lacks a flexible junction between the theca and basal plate. The absence of pseudoparameres in G. bowensis and G. karumbae as recorded by Ewart and Marques (2008) was an oversight.

Discussion. Notes on the species of this genus including analyses of their songs are provided by Ewart and Marques (2008).

Genus GUDANGA Distant

Gudanga Distant, 1905f: 204, 208; Distant, 1906d: 140, 146; Distant, 1913a: 489; Deletang, 1923: 627; Schulze, Kükenthal and Heider, 1926-40: 1421; Kato, 1932: 177, 178; Neave, 1939a: 523; Kato, 1956: 69, 81; Burns, 1957: 641; Metcalf, 1963: 179, Duffels and van der Laan, 1985: 228; Moulds, 1990: 116-117; Moulds, 1996: 19-20; Moulds, 2005a: 377, 392, 423, 424, 430, 436.
Paragudanga Distant, 1913a: 488-489; Ashton, 1914a: 350; Schulze, Kükenthal and Heider, 1926-1940: 2496; Neave, 1940a: 571; Burns, 1957: 641; Metcalf, 1963: 185; Duffels and van der Laan, 1985: 229; Moulds, 1990: 116.

Type species: Gudanga boulayi Distant, 1905, by original designation (Pl. 1, fig. 4).
Included species: adamsi Moulds, 1996; aurea Moulds, 1996; boulayi Distant, 1905; browni (Distant, 1913); kalgoorliensis Moulds, 1996; pterolongata Olive, 2007; solata, Moulds, 1996. OTHERS: none.

Distribution (Fig. 148h): South-western quarter of Western Australia, northern Queensland between Croydon and Georgetown, and inland southern Queensland (Moulds 1996, Olive 2007). All records are from areas receiving from $200-750 \mathrm{~mm}$ annual average rainfall.

FIGURE 148. Genus Gudanga Distant: (a) G. boulayi Distant, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male body showing opercula; (f) the same, fore wing; (g) the same, hind wing; (h) generic distribution.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 148f) strongly pigmented, opaque, black to dark brown; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; vein CuA weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $m-c u$ so that proximal portion shortest; veins CuP and 1A fused in part; infuscations lacking but veins mostly highlighted jet black; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 148g) with basal portion pigmented orange or red; 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 148e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 148e) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 148a-d). Pygofer with distal shoulders not developed; upper lobes very flat, very well developed, dominating pygofer between basal lobes and dorsal beak; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate with a functional 'hinge'; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base; endotheca exposed, ridged, in part or entirely chitinized; endothecal ventral support present; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. A distinctive genus with fore wings and veins strongly tinted opaque black to dark brown; hind wings bearing bright orange or red suffusion basally. The male pygofer possesses very large, broad, subtriangular upper lobes and a very broad dorsal beak, characters otherwise found only in some Pauropsalta. The aedeagus is unusual (but not unique) in having a theca that is typically 'trifid' but with an endotheca that is sclerotized rather than soft and fleshy.

Discussion. Small cicadas. The relationship between Gudanga and other Australian genera is documented in a cladistic analysis by Moulds (2005a); Gudanga falls as the sister to all other Cicadettini included in the analysis. Relationships between Gudanga and the South-east Asian tribe Huechysini are discussed by Moulds (1996), who concluded that the superficial appearance between the two is misleading and there is no close relationship. The type species of the genus has characteristic red colouration at the base of the wings (Pl. 1, fig. 4).

Species of the genus have been reviewed by Moulds $(1990,1996)$ and Olive (2007). An analysis of the song of G. adamsi can be found in Ewart (1998a). Notes and a song analysis of an undescribed Gudanga species from Queensland are provided by Ewart \& Popple (2001).

Genus GUINEAPSALTRIA de Boer

[^2]

FIGURE 149. Genus Guineapsaltria de Boer: (a) G. flava (Goding and Froggatt), male genitalia, ventral view; (b) the same, male genitalia, lateral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) underside of male body showing opercula; (h) the same, male reproductive system, dissection with aedeagus removed from pygofer; (i) generic distribution in Australia.

Type species: Tibicen flava (Goding and Froggatt, 1904), by original designation.

Included species: AUSTRALIAN: flava (Goding and Froggatt), 1904. OTHERS: chinae (Blöte, 1960); flaveola de Boer, 1993; pallida (Blöte, 1960); pallidula de Boer, 1993; pennyi de Boer, 1993; stylata (Blöte, 1960); viridula (Blöte, 1960).

Distribution (Fig. 149i): In Australia confined to the islands of Torres Strait and far north-eastern Queensland south to Mission Beach (Moulds 1990). Beyond Australia confined to New Guinea and adjacent islands.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 149e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma absent; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 149f) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 149g) distant from lateral margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically tapering to a blunt point, inner margin straight, far from meeting. Male abdomen (Fig. 149g) in cross-section with sides of tergites concave, lateroventrally rounded to ventral surface; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs many and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases; timbal covers absent.

Male genitalia (Figs 149a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; theca with prominent dorsal subapical protrusion that is usually directed backwards, thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 149h) with accessory glands short.
Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas uniformly coloured green, yellow or reddish and for the most part without body or wing markings. Within the Australian fauna readily distinguished by its uniform green coloration (there is also a rare orange-yellow form), small size (fore wing never above 20 mm), lack of fore wing subapical cells and almost total lack of a fore wing margin.

The genus is distinguished primarily on male genitalic characters. A large dorsal subapical protrusion on the aedeagus is regarded as apomorphous (Fig. 149c) (de Boer 1993a).

Discussion. The genus has been reviewed by de Boer (1993a) and its phylogenetic placement is discussed by de Boer (1995b, 1997) and Moulds (2005a). De Boer and Duffels (1996a) consider the origin of Guineapsaltria as most likely from northern New Guinea with dispersal to the Papuan peninsula and subsequently to Australia.

The distribution and biology of the single Australian species in this genus has been summarised by Moulds (1990).

Genus GYMNOTYMPANA Stål

Gymnotympana Stål, 1861: 619; Marschall, 1873: 365; Distant, 1892: 103, 123; Distant, 1905f: 213, 214; Distant, 1905h: 563; Distant, 1906a: 388; Distant, 1906d: 153, 157; Schulze, Kükenthal and Heider, 1926-40: 1432; Kato, 1932: 183; Neave, 1939b: 534; Kato, 1956: 70; Metcalf, 1963: 252-254; Boulard, 1975: 315; Duffels, 1977: 205, 207; Boulard, 1979a: 35;

> Holloway, 1979: 235; Duffels and van der Laan, 1985: 250; Duffels, 1988b: 7; de Boer, 1990: 64; de Boer, 1991: $1-4$; de Boer, 1992b: 18-20, 23; de Boer, 1993a: 16-17; de Boer, 1993b: 141-143; de Boer, 1995a: 1-81; de Boer, 1995b: 213-214, 215; de Boer, 1995c: 2, 5, 6, 7; de Boer, 1995d: 202, 205, 206, 207, 208, 214, 217, 218, 219, 222, 224, 225, 229, $230,233,234,235,236,237$; de Boer, 1996: $352,353,354,355,356,358$; de Boer and Duffels, 1996a: 155, 159, 163, 164, 165, 166, 167, 170, 171, 172, 173; de Boer and Duffels, 1996b: 301, 304, 306, 312, 313, 316, 318; de Boer, 1997: 91 , $92,93,94,98$; Moulds, 2005a: $390,392,412,413,430,435$.

Type species: Cicada strepitans Stål, 1861, by subsequent designation by Distant, 1905g: 214.
Included species: AUSTRALIAN: rufa (Ashton, 1914); varicolor (Distant, 1907). OTHERS: dahli (Kuhlgatz, 1905); hirsuta de Boer, 1995; langeraki de Boer, 1995; membrana de Boer, 1995; minoramembrana de Boer, 1995; montana de Boer, 1995; nigravirgula de Boer, 1995; obiensis de Boer, 1995; olivacea Distant 1905; parvula de Boer, 1995; phyloglycera de Boer, 1995; rubricata (Distant, 1897); stenocephalis de Boer, 1995; strepitans (Stål, 1861); stridens (Stål, 1861); subnotata (Walker, 1868); verlaani de Boer, 1995; viridis de Boer, 1995.

Distribution (Fig. 150i): New Guinea, northern Maluku, the Bismarck Archipelago, the D'Entrecasteaux Islands, the Louisiade Archipelago, Woodlark Island and north-eastern Queensland (de Boer 1995a).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 150e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma absent; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} diverging from Sc in subapical region; vein Cu_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Figs 150f, g) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe narrow (very narrow in males) with vein 3A straight, short, adjacent to wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 150h) distant from lateral margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically tapering to a blunt point, inner margin straight, either meeting as in the type species or spaced apart as in the two Australian species. Male abdomen (Fig. 150h) in cross-section with sides of tergites concave, lateroventrally rounded to ventral surface; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VI in cross-section convex. Timbal covers absent; timbal ribs many and regular in size and closely spaced filling entire timbal area apart from the small basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 150a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present, large and pointed, and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. Males can be distinguished from other Chlorocystini by having the hind wing anal lobe very narrow. The male genitalia have a very robust, long, and pointed dorsal beak. Females differ from other Australian Chlorocystini by having 8 apical cells in the fore wing in conjunction with a very abrupt narrowing of the subcostal vein beyond the node. Males of the two Australian species differ from all others in the genus by having a broad, bright red median ventral band on the abdomen; otherwise they are primarily green in colour.

De Boer (1995a) has revised Gymnotympana in detail and redefined its concept. He comments that the genus comprises a rather heterogeneous group of species, the differences being manifold and striking. Most of the charac

FIGURE 150. Genus Gymnotympana Stål: (a) G. rufa (Ashton), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male fore wing; (f) the same, male hind wing; (g) G. varicolor (Distant), female hind wing; (h) G. strepitans (Stål), underside of male body showing opercula; (i) generic distribution in Australia. al anal lobe, $b l$ basal lobe, $o p$ operculum, $u l$ upper lobe.
ters that are typical of Gymnotympana are not shared by all of its species although sufficient are retained by all species to indicate close relationships (de Boer 1995a: 3). One character only is shared by all species, a very narrow anal area to the hind wing in the males; females have much larger anal areas as found in both sexes of related groups.

Discussion. De Boer (1995a) resolves the phylogenetic positions for all species in the genus, concluding that the two Australian species form a sister group relationship with all others. He also concludes that Gymnotympana and Venustria may be sister groups. While the phylogenetic position of Venustria is not unambiguous, the bubblelike shape of the basal part of the male opercula (remnant of epimeron 3) indicates a monophyletic origin with the two Australian species of Gymnotympana. Broader phylogenetic relationships are also documented by de Boer (1995b) and Moulds (2005a).

The distribution and biology of the two Australian species in this genus have been summarised by Moulds (1990).

Genus HELIOPSALTA gen. n.

Type species: Cicadetta polita Popple, 2003 (Pl. 1, fig. 8).
Included species: polita (Popple, 2003), comb. n.
Etymology. From the Greek helios, the sun, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 151f): Inland south-eastern Queensland, south from the Edungalbra district (some 80 km SW of Rockhampton) to Glenmorgan (some 120 km SE of Roma).

Diagnosis. Head including eyes a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 151e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 151e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases.

Male genitalia (Figs 151a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, clear of pygofer margin; dorsal beak present as a

FIGURE 151. Genus Heliopsalta gen. n.: (a) H. polita (Popple), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) underside of male body showing opercula; (f) generic distribution. $b l$ basal lobe.
developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad; apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view converging throughout their length, in lateral view aligned with thecal shaft but gently curved down throughout its length, proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the paranota are confluent with adjoining pronotal sclerites and lack a mid lateral tooth, and the timbal cavity posterior margin is ridged on its lower half or so. These characteristics distinguish Heliopsalta from most other genera. The single known species in this genius is darkly coloured with a distinctive orange pronotal colour (Pl. 1, fig. 8).

Distinguished from all genera by the male genitalia which have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, pseudoparameres that converge throughout their length and a basal lobe that sits clear of the pygofer margin in lateral view (Fig. 151a).

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis included in the introductory part of this paper. Notes on the type species, including its distribution and an analysis of its song, are included in Popple (2003).

Genus HENICOPSALTRIA Stål

Henicopsaltria Stål, 1866a: 7; Stål, 1866b: 171; Dallas, 1867: 210, 557; Marschall, 1873: 366; Distant, 1882: 125; Atkinson, 1886: 178; Kirby, 1896: 458; Distant, 1904a: 302, 303; Goding and Froggatt, 1904: 564, 567, 573; Distant, 1906d: 27, 29; Froggatt, 1907: 350; Distant, 1910: 417; Ashton, 1912b: 24; Distant, 1912a: 22, 24; Ashton, 1914a: 347; Ashton, 1921: 96, 97; Tillyard, 1926: 162; Schulze, Kükenthal and Heider, 1926-40: 1518; Myers, 1928a: 59; Kato, 1932: 153; Neave, 1939b: 618; Cooper, 1941: 295; Kato, 1956: 66, 79; Burns, 1957: 619; Metcalf, 1963: 156; Moulds, 1978: 225-228; Duffels and van der Laan, 1985: 54; Moulds, 1990: 68; Moulds, 1993: 23; Moulds, 205a: 377, 387-389, 391, 413, 423, 430, 431.

Type species: Cicada eydouxii Guérin-Méneville, 1838, by subsequent designation by Distant 1904a: 303.
Included species: AUSTRALIAN: danielsi Moulds, 1993; eydouxii (Guérin-Méneville, 1838); kelsalli Distant, 1910; rufivelum Moulds, 1978. OTHERS: none.

Distribution (Fig. 152j): Eastern Queensland south from Iron Range on Cape York Peninsula and eastern NSW south to Narooma on the far South Coast (Moulds 1990).

Diagnosis. Head (Fig. 152f) including eyes about as wide as mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate in H. eydouxii, less so in other species; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 152f): pronotal collar width at dorsal midline much less than diameter of eyes; paranota marginally ampliate, no mid lateral tooth but in all species except H. kelsalli margin partly finely serrate; cruciform elevation with its dome wider than long; epimeral lobe reaching or almost reaching operculum. Fore wings (Fig. 152g) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no

FIGURE 152. Genus Henicopsaltria Stål: (a) H. eydouxii (Guérin-Méneville), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, basal plate, dorsolateral view, apex at right; (f) same species, head and pronotum, dorsal view; (g) H. rufivelum Moulds, fore wing; (h) H. eydouxii, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (i) the same, male reproductive system, dissection with aedeagus removed from pygofer; (j) generic distribution.
larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion longest; veins CuP and 1A fused in part; infuscations overlaying veins on some species, at bases of some or all apical cells $2-8$, also at extremities of longitudinal veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula covering rim of distal margin of tympanal cavity, reaching to or beyond sternite III, overlapping, lateral margin very long and straight. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; sternites III-VII in cross-section convex. Timbal covers present, flat, fully rounded dorsally and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 152a-e). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes thickened, well developed; basal lobes undivided, dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe finger-like, broad and long, apically divided into a pair of large lobes, a similar but usually smaller pair of lobes ventrally, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 152i) accessory glands long.

Female reproductive system (Fig. 152h) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Medium to large cicadas. Within the Australian fauna, males are characterised by a narrow pronotal collar in conjunction with the fully developed and tightly closed timbal covers that do not overlap the opercula. Females can be distinguished by their large eyes (widest diameter of eye about equal to, or greater than, the distance from eye to lateral ocellus), a narrow pronotal collar that is finely serrate along part of lateral margin, and a very long slender pointed end to the abdomen.

The male genitalia are distinctive in having the uncus apically divided into a pair of long, nearly parallel, robust lobes plus a ventral pair of similar but smaller lobes; the latter secure the aedeagus.

Nymphs have the hind tibiae with a spinal crown that includes one very dominant flat spine, a character otherwise found only in Tettigarcta.

Discussion. Phylogenetic relationships of the genus are documented by Moulds (2005a) in a cladistic analysis incorporating H. eydouxii and H. rufivelum as representatives of the genus. The distribution and biology of the species in this genus have been summarised by Moulds (1978, 1990, 1993). Notes on seasonal occurrence and plant association of H. eydouxii in western Sydney are provided by Emery et al. (2005). Further notes on species including song analyses are provided by Ewart (1995), Moulds (1990) and Young (1973).

Genus ILLYRIA Moulds

Illyria Moulds, 1985: 25-26; Moulds, 1990: 107: Moulds, 2005a: 387, 390, 423, 430, 431.
Type species: Tibicen burkei Distant, 1882, by original designation.
Included species: AUSTRALIAN: australensis (Kirkaldy, 1909); burkei (Goding and Froggatt, 1904); hilli (Ashton, 1921), major Moulds, 1985. OTHERS: none.

Distribution (Fig. 153h). Throughout much of the northern half of Australia but excluding far south-western Queensland and the far south of Northern Territory (Moulds 1990).

Diagnosis. Head (Fig. 153f) including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plates; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion longest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 , and in most species also 4, 5,7 and sometimes 6 , also most species with infuscations at extremities of longitudinal veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula covering rim of distal margin of tympanal cavity, reaching to or a little beyond level of distal margin of tergite 2, overlapping. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VI in cross-section convex. Timbal covers present, flat, fully rounded dorsally and extending almost to metathorax but not tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 153a-e). Pygofer with distal shoulders distally extended into pointed, and apically upturned, lobe; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe finger-like, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci present; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown. Female abdominal segment 9 long, dorsal midline at least equal in length to abdominal tergites 2, 3, and 4; ovipositor sheath protruding marginally. Female reproductive system (Fig. 153g) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Small to medium-sized cicadas. The wide head (with protruding eyes that are clearly wider than mesonotum), a narrow pronotal collar (significantly less than diameter of eyes) and fore wing infuscations at bases of apical cells 2 and 3, help delineate this genus. It differs from the superficially similar genus Burbunga by having male timbal covers large (almost reaching metathorax, instead of very short) and females with a long abdominal segment 9 (dorsal midline at least as long as abdominal tergites 2,3 and 4 , instead of 2 and 3 only).

The male genitalia are distinctive, possessing a pygofer with greatly extended distal shoulders that are upwardly turned at their apices, basal lobes that are large, broad and outwardly directed, and a theca bearing a pair of subapical cerci.

Discussion. Phylogenetic relationships of this genus have been documented by Moulds (2005a) in a cladistic analysis in which the type species is represented. The distribution and biology of the species in this genus have been summarised by Moulds (1985, 1990). Additional notes on I. burkei, including song analyses, can be found in Burwell (1991), Ewart (1993), 1998a, 2005b), Ewart \& Popple (2001) and Popple \& Strange (2002).

FIGURE 153. Genus Illyria Moulds: (a) I. burkei (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, pygofer showing absence of dorsal beak; (d) aedeagus, lateral view; (e) the same, basal plate, dorsal view, apex at top; (f) the same, head, dorsal view; (g) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic (h) generic distribution.

Jassopsaltria Ashton, 1914a: 350; Burns, 1957: 641; Metcalf, 1963: 171; Duffels and van der Laan, 1985: 225; Moulds, 1990: 111; Moulds 2005a: 392, 413, 416, 424, 425, 430, 431, 433.

Type species: Jassopsaltria rufifacies Ashton, 1914, by monotypy.
Included species: AUSTRALIAN: rufifacies Ashton, 1914. OTHERS: none.
Distribution (Fig. 154h): Western Australia from near Geraldton, near Guilderton and inland at Cue (Moulds 1990).

Diagnosis. Head (Fig. 154e) including eyes wide, clearly wider than mesonotum; distance between supraantennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 154f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 154g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, clearly separated. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers present, flat, reduced dorsally and far from reaching metathorax, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 154a-d). Pygofer with distal shoulders distally extended into pointed, and often apically up-turned, lobe; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent (but present in female). Uncus undivided and dominated by median lobe; median lobe finger-like, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, ' 6 ' shaped; pseudoparameres absent; thecal apex chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female ovipositor sheath barely protruding distally. Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to very small cicadas. Distinguished by the following combination of characters: a broad head that is wider than the mesonotum, and a supra-antennal plate that is produced apically into a pointed lobe. The body is remarkably squat, especially in the male, and the male's epimeral lobe does not reach the operculum.

The male aedeagus is unique among Australian genera in its basal '6' shape and ' U ' shaped distal half (Fig. $154 \mathrm{c})$. The distal shoulders are well developed with pointed apices.

FIGURE 154. Genus Jassopsaltria Ashton: (a) J. rufifacies Ashton, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) generic distribution.

Discussion. This genus forms a monotypic tribe, the Jassopsaltriini. The phylogenetic relationships of this genus have been discussed in Moulds (2005a). The distribution and biology of the single species included here have been summarised by Moulds (1990).

Genus KIKIHIA Dugdale

Kikihia Dugdale, [1972]: 861, 862, 874-5, 879, 880; Fleming, 1973: 315, 316; Fleming, 1975a: 48, 50-52, 57, 61-63; Fleming, 1975b: 299, 300, 302, 303, 304; Fleming 1975c: 1592; Wise, 1977: 73; Fleming, 1984: 191, 192-193, 202, 204, 205; Duffels and van der Laan, 1985: 303; Lane, 1993: 53; Lane, 1995: 367, 373, 378, 379, 382, 383, 388, 390,392, 396, 404, 405, 407-409; Buckley, et al., 2002: 4, 5, 6, 10, 13, 15; Arensburger, et al., 2004a: 557-566; Arensburger, Simon and Holsinger, 2004: 1769-1779; Moulds, 1990: 170; Moulds, 2005a: 390, 410, 415, 430, 436; Buckley and Simon, 2007: 423, 431; Marshall, et al. 2008: 1054-1066; Marshall, et al., 2009: 1997, 2006.

Type species: Cicada subalpina Hudson, 1891, by original designation.
Included species: AUSTRALIAN: convicta (Distant, 1892). OTHERS: angusta (Walker, 1850); cauta (Myers, 1921); convicta (Distant, 1892); cutora (Walker, 1850); dugdalei Fleming 1984; exulis (Hudson, 1950); horologium Fleming, 1984; laneorum Fleming, 1984; longula (Hudson, 1950); muta (Fabricius, 1775); ochrina (Walker, 1858); paxillulae Fleming, 1984; rosea (Walker, 1850); scutellaris (Walker, 1850); subalpina (Hudson, 1891).

Distribution (Fig. 155e): Within Australia known only from Norfolk Island; otherwise restricted to New Zealand.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, usually not meeting but touching in some species, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites IV-VII in crosssection convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 155a-d). Pygofer with distal shoulders not developed; upper lobes flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view downturned at distal end; in dorsal view T-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft curved in an arc, sickle-shaped; pseudoparameres present, entirely lateral of theca, very long, slender and flat, following line of theca; thecal apex entirely chitinized, bifurcate; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.

FIGURE 155. Genus Kikihia Dugdale: (a) K. subalpina (Hudson), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution in Australia.

Distinguishing characters. Small cicadas. Dugdale [1972] distinguished the genus primarily on genitalic structures, particularly the shape of the male theca which is evenly but strongly curved and somewhat sickleshaped with a bifurcate apex. Also, the pseudoparameres are long, flat, laterally adjacent to the theca and reach the distal end of the theca. Further, the aedeagus lacks a basal hinge and the basal plate is downturned at its distal end in lateral view and T-shaped in dorsal view. Females cannot be distinguished from many other genera of Cicadettini.

Discussion. The only Australian species in this genus, K. convicta, is restricted to Norfolk Island; the other 13 species are confined to New Zealand. Notes on K. convicta, including its phylogenetic relationships and song, are provided by Arensburger, Simon and Holsinger (2004), Buckley and Simon (2007) and Marshall et al. (2008), and Moulds (1990). Marshall et al. (2011) provide a detailed analysis of New Zealand Kikihia species and their hybridization zones including molecular phylogenies and song analyses. Fleming (1975a) also provides analyses of song structures for some New Zealand species and Fleming (1984) provides a partial review of the New Zealand species. Phylogenetic relationships of the genus with other Cicadidae are provided by Moulds (2005a) in a cladistic analysis that includes a representative of the type species.

Genus KOBONGA Distant

Kobonga Distant, 1906a: 387; Distant, 1906d: 163, 177; Ashton, 1912b: 27; Ashton, 1914a: 351; Schulze, Kükenthal and Heider, 1926-40: 1731; Kato, 1932: 187; Neave, 1939b: 831; Metcalf, 1944: 155; Metcalf, 1947: 163; Kato, 1956: 70,79; Burns, 1957: 666; Metcalf, 1963: 271; Dugdale, 1972: 877, 878, 880; Duffels and van der Laan, 1985: 299; Moulds, 1990: 129; Moulds, 2005a: 390, 430, 436.

Type species: Cicada umbrimargo Walker, 1858, by original designation (Pl. 1, fig. 1).
Included species: AUSTRALIAN: apicans Moulds and Kopestonsky, 2001; apicata (Ashton, 1914), comb. n.; froggatti Distant, 1913; fuscomarginata (Distant, 1914); godingi (Distant, 1905); oxleyi (Distant, 1882); umbrimargo (Walker, 1858). OTHERS: none.

Distribution (Fig. 156g): Most of the southern third of Western Australia, through much of South Australia except the north-east quarter, north-western Victoria, south-western NSW, inland northern NSW extending north through much of central Queensland almost to Mackay, and in central Northern Territory (Moulds 1990, Moulds and Kopestonsky 2001, Haywood 2006a).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth (absent in some individuals); cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 156e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one (although some individuals of K. umbrimargo and K. froggatti have these veins just separated); vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; veins CuP and 1 A fused in part; distance between cross veins and $\mathrm{r}-\mathrm{m}$ much less than distance between $\mathrm{r}-\mathrm{m}$ and m ; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation overlaying veins at bases of apical cells 2 and 3, in some species also at bases of 5 and 7 , also at extremities of longitudinal veins and usually also including ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells (5 in aberrant specimens); infuscation along much of ambient vein in some species; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 156f) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half. Male abdomen (Fig. 156f) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites III-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

FIGURE 156. Genus Kobonga Distant: (a) K. umbrimargo (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore wing; (f) the same, underside of male body showing opercula; (g) generic distribution.

Male genitalia (Figs 156a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view with a subapical outward bump, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to medium-sized cicadas. The paranota have a mid lateral tooth, the fore wing ambient vein is continuously infuscated along much of its length in all described species except apicata, and the fore wing apical cells are much shorter than the ulnar cells in all species except apicans, apicata and froggatti.

The male genitalia have claspers that are essentially flat and wide in lateral view with an out-turned rim along upper margin to apex; the basal lobes are unique in having a subapical outward bump (not always clearly developed), and the aedeagus has a typically 'trifid' theca exposing a fleshy endotheca.

Discussion. Phylogenetic relationships of this genus are documented in a cladistic study by Moulds (2005a), in which the type species is represented, and in the introductory part of this paper. The distribution and biology of the species of this genus have been summarised by Moulds (1990, 2001) and Moulds \& Kopestonsky (2001). Additional notes on K. oxleyi and K. apicata, including analyses of their songs, can be found in Ewart (1998a, 2009a) and Ewart \& Popple (2001). Further notes on Kobonga species are provided by Coombs (1993a), Haywood (2006a) and Popple \& Strange (2002).

Genus LEMBEJA Distant

Perissoneura Distant, 1883: 189 (nec Perissoneura MacLachlan, 1891); Karsch, 1890b: 190; MacLachlan, 1891: 319, 320; Schulze, Kükenthal and Heider, 1926-40: 2589; Neave, 1940a: 668; Metcalf, 1944: 156.
Lembeja Distant 1892: 103 (replacement name for Perissoneura Distant, 1883); Distant 1892: 147; Distant 1897: 370; Jacobi 1903: 10,13; Distant 1905g: 276, 279; Kuhlgatz 1905: 79; Distant 1906d: 182, 184; Distant 1909: 394; Ashton 1912d: 77; Horváth 1912b: 609; Horváth 1913: 427; Ashton 1914a: 356; Distant 1914b: 346; Delétang 1923: 623; Handlirsch 1925: 1116; Schmidt 1925: 42; Schulze, Kükenthal and Heider 1926-40: 1791; Myers 1929b: 50; Kato 1932: 188, 189; Neave, 1939b: 892; Jacobi, 1941: 317, 318; Metcalf, 1944: 155; Lallemand and Synave, 1953: 233; Kato 1956: 23, 70; Burns 1957: 669; Metcalf, 1963: 428; Duffels 1977: 205, 207; Boulard 1979a: 46; Holloway 1979: 235; de Jong and Duffels, 1981: 53; de Jong, 1982: 175; Duffels, 1983b: 492; de Jong, 1985: 165, 166; Duffels and van der Laan 1985: 314; de Jong, 1986: 141-180; Duffels, 1986: 319, 325, 326; Moulds 1990: 178; Duffels, 1990: 68, 69; Duffels and de Boer, 1990: 257; de Boer, 1993b: 146; de Boer, 1995d: 200, 221, 222, 229, 234; de Boer and Duffels 1996a: 155, 167; de Boer and Duffels 1996b: 301; Moulds, 2005a: 393, 412, 413, 430, 436.
Lembejam [sic]; Breddin, 1901: 113 (misspelling).
Type species: Perissoneura maculosa Distant, 1883, by subsequent designation by Distant, 1905g: 279.
Included species: AUSTRALIAN: paradoxa (Karsch, 1890b); vitticollis (Ashton, 1912d). OTHERS: brendelli de Jong, 1986; crassa Distant, 1909; dekkeri de Jong, 1986; distanti de Jong, 1986; elongata de Jong, 1986; fatiloqua (Stål, 1870a); foliata (Walker, 1858b); fruhstorferi Distant, 1897; harderi Schmidt, 1925; hollowayi de

FIGURE 157. Genus Lembeja Ashton: (a) L. maculosa (Distant) (the type species of the genus, but not Australian), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution in Australia.

Jong, 1986; incisa de Jong, 1986; maculosa (Distant, 1883); majuscula de Jong, 1986; minahassae de Jong, 1986; mirandae de Jong, 1986; oligorhanta de Jong, 1986; papuensis Distant, 1897; pectinulata de Jong, 1986; robusta Distant, 1909; roehli Schmidt, 1925; sangihensis de Jong, 1986; sanguinolenta Distant, 1909; tincta (Distant, 1909).

Distribution (Fig. 157g): Philippine Islands (Mindanao), Sangihe Island, Sulawesi, Lesser Sunda Islands, New Guinea and Australia where it is confined to north-eastern Queensland from the Torres Strait Islands to the Paluma Range (de Jong 1986, Moulds 1990).

Diagnosis. Head including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome narrower than long; epimeral lobe not reaching operculum. Fore wings (Fig. 157e) maculated, tegmen-like, brown; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused in part, the fusion complete to ambient vein; infuscation absent but patchy maculation following veins on some species; wing outer margin greatly reduced and in part contiguous with ambient vein. Hind wings (Fig. 157f) with 6 apical cells; no infuscation on ambient vein; veins CuP and 1A fused as one in most species before ambient vein; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VI in cross-section convex. Timbal covers absent; timbal ribs many and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 157a-d). Pygofer with distal shoulders not developed; upper lobes thickened, well developed; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominating, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view T-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Medium-sized cicadas, brown in colour with fore wings that resemble dead leaves. Clearly distinguished from all other Australian genera by the fusion of hind wing veins CuP and 1 A prior to reaching ambient vein. Fore wing veins CuP and 1 A are also characteristically fused right to the ambient vein instead of diverging just prior to meeting the ambient vein and the fore wing outer margin is greatly reduced and in part contiguous with the ambient vein. Lembeja is also the only Australian genus in which the fore wings have the appearance of dead leaves, being opaque and brown in colour.

Discussion. Phylogenetic relationships of this genus are documented by Moulds (2005a) in a cladistic analysis that incorporates L. vitticollis as the single representative of Lembeja. The Australian species have been reviewed by de Jong (1982) and Moulds (1990). De Jong (1987) placed paradoxa in the fatiloqua group characterised by a strongly developed medial dent in the first tergite of males and an inflatable telescoping male abdomen, and placed vitticollis in the robusta group which awaits revision and description (de Jong pers. comm., and de Boer 1995b).

Genus LIMNOPSALTA gen. n.

Type species: Melampsalta stradbrokensis Distant, 1915.
Included species: AUSTRALIAN: stradbrokensis (Distant, 1915), comb. n. OTHERS: none.

Etymology. From the Greek limno meaning marsh, lake or pool and referring to the type species' preferred habitat of sedge swamps and reed grass, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 158f): South-eastern Queensland in coastal districts from Fraser Island to near Burleigh Heads.

Diagnosis. Head including eyes a little narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell usually very long (about equal to or longer than distance from its apex to wing tip), occasionally shorter; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 158e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 158e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 158a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, tubular, tapering to a hooked beak-like distal end; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; almost parallel in ventral view but slightly diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the fore wing radial cell is very long (about equal to or longer than the distance from its apex to wing tip), and the paranota are confluent with adjoining sclerites and lack a mid lateral tooth.

FIGURE 158. Genus Limnopsalta gen. n.: (a) L. stradbrokensis (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) underside of male abdomen showing opercula; (f) generic distribution.

These characteristics distinguish Limnopsalta from all genera except some rare individuals of Telmapsalta that have a long fore wing radial cell. Limnopsalta differs in the shape of the claspers of the male genitalia which are almost parallel in ventral view, tubular, and in lateral view taper to a hooked beak-like apex; those of Telmapsalta are strongly divergent in ventral view while in lateral view are apically broadly rounded.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis included in the introductory part of this paper. Ewart (1989a) briefly mentions wing clapping in L. stradbrokensis. Further notes on L. stradbrokensis are provided by Ewart (1995) and Moulds (1990).

Genus MACROTRISTRIA Stål

Cicada (Macrotristria) Stål 1870b: 714.
Macrotristia [sic]; Atkinson 1886: 178 (stat. nov., misspelling); Distant 1891: 93.
Macrotristria; Kirby 1896: 458; Distant 1904b: 329; Distant 1904c: 425; Distant 1906d: 30, 31; Froggatt 1907: 350; Ashton 1912c: 30; Distant 1912a: 25; Ashton 1914a: 347; Ashton 1914b: 12; Ashton 1921: 99; Tillyard 1926: 162; Schulze, Kükenthal and Heider 1926-40: 1949; Myers 1929b: 135; Kato 1932: 9, 141, 154; Neave 1940a: 23; Metcalf 1944: 154; Metcalf 1947: 163; Kato 1956: 62, 67; Burns 1957: 621; Metcalf 1963: 160; Burns 1964: 77-123; Duffels and van der Laan 1985: 55; Moulds 1990: 86-87; Moulds 1992: 133; Boulard 1996: 96, 100; Moulds, 2005a: 387, 388, 391, 423, 429-431.
Cicada (Macrotistria) [sic]; Horváth 1926: 96 (misspelling).
Type species: Cicada angularis Germar, 1834, by original designation.
Included species: AUSTRALIAN: angularis (Germar, 1834); bindalia Burns, 1964; doddi Ashton, 1912; dorsalis Ashton, 1912; douglasi Burns, 1964; extrema (Distant, 1892); frenchi (Distant, 1892); godingi Distant, 1907; hieroglyphicalis (Kirkaldy, 1909); intersecta (Walker, 1850); kabikabia Burns, 1964; kulungura Burns, 1964; lachlani Moulds, 1992; maculicollis Ashton, 1914; sylvara (Distant, 1901); thophoides Ashton, 1914; vittata Moulds, 1992; worora Burns, 1964. OTHERS: madegassa Boulard, 1996.

Excluded species: The following species do not belong to this genus.
aterrima (Distant, 1914) transferred to Burbunga, q.v.
hillieri Distant, 1907 transferred to Burbunga, q.v.
nanda Burns, 1964 transferred to Burbunga, q.v.
nigrosignata Distant, 1904 transferred to Burbunga, q.v.
occidentalis Distant, 1912 transferred to Burbunga, q.v.
Distribution (Fig. 159i): Throughout much of tropical and subtropical Australia and monsoonal offshore islands but absent from central Australia, much of Western Australia, the southern rim of the continent and Tasmania (Moulds 1990). A single species is also known from Madagascar (Boulard 1996).

Diagnosis. Head (Fig. 159e) including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 159e): pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota almost confluent with adjoining pronotal sclerites but with distinct anterior rounded lobe (except in M. hillieri), no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion longest; veins CuP and 1A fused in part; infuscation on some species only, overlaying some or all veins at bases of apical cells $2-7$, also sometimes at extremities of longitudinal veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 159f) covering rim of distal margin of tympanal cavity, reaching a little beyond level of distal margin of tergite 2, overlapping. Male abdomen (Fig. 159f) in cross-section with sides of tergites

e

FIGURE 159. Genus Macrotristria Stål: (a) M. angularis (Germar), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum, dorsal view; (f) underside of male abdomen showing opercula; (g) M. sylvara (Distant), male reproductive system, dissection with aedeagus removed from pygofer; (h) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (i) generic distribution in Australia.
straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbals flat, fully rounded dorsally and extending to metathorax, not tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases; timbal covers present.

Male genitalia (Figs 159a-d). Pygofer with distal shoulders broad, rounded, in some species the most distal part of pygofer; upper lobes absent; basal lobes undivided, moderately to strongly developed, tending to be broadly rounded or elongate in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe finger-like, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci present, either one or two; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 159g) with accessory glands long.

Female reproductive system (Fig. 159h) ditrysian; accessory glands of common oviduct long, longer than length of lateral oviduct.

Distinguishing characters. Medium to large cicadas. The broad pronotal collar (nearly equal to diameter of eyes, or a little more) with lateral margins greatly reduced is unique to Macrotristria. Also characteristic is a distinct rounded lobe to the anterior lateral margin of the pronotal collar. The male opercula closely follow the rim of the tympanal cavity and the timbal covers never tightly close off the timbal cavity.

The male genitalia lack unique characters; the theca has either one or two subapical cerci; the pygofer basal lobes, while moderately developed in most species, are very elongate in M. angularis and the uncus, although fin-ger-like, shows much variety in form between species.

Discussion. Phylogenetic relationships of this genus are documented in Moulds (2005a) in a cladistic analysis that includes a representative of the type species and M. intersecta. Burns (1964) and Moulds (1990) have reviewed the genus. Additional notes on species including song analyses can be found in Bennet-Clark and Young (1992), Ewart (1993, 1995, 2005b), Ewart and Popple (2001) and Moulds (1992). Further notes on M. angularis are provided by Coombs (1996), Emery et al. (2005) and Popple \& Strange (2002).

Genus MARTEENA Moulds

Marteena Moulds, 1986: 39-40; Moulds, 1990: 126; Moulds, 2005a: 377, 393, 423, 425, 430, 436.
Type species: Tibicen rubricinctus Goding and Froggatt, 1904, by original designation.
Included species: AUSTRALIAN: rubricincta (Goding and Froggatt, 1904). OTHERS: none.
Distribution (Fig. 160g): Known only from Ravensthorpe in the south-west of Western Australia, near Morgan in the south-east of South Australia and near Eurabalong in mid western NSW (Moulds 1986, 1990).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 160e) hyaline, without infuscation; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA strongly bowed so that cubital cell much larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ much less than distance between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 160f) with 6 apical cells; no infuscation on ambient vein; width of 1st

FIGURE 160. Genus Marteena Moulds: (a) M. rubricincta (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution.
cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long, separated from wing margin, steeply outcurved and meeting ambient vein almost at right angles; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so; base (remnant of epimeron 3) much swollen and bub-ble-like; Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites III-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long);anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; large basal dome; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 160a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, fang-like, excavated ventrally; unfused; with a rounded, inward-facing swelling on inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view directed upwards compared to thecal shaft with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small cicadas. Fore wing veins M and CuA are completely separated and parallel for a short distance before meeting the basal cell, hind wing vein 3A is steeply out-curved to meet the ambient vein almost at right angles, and the male opercula have the basal part (epimeron 3) swollen, somewhat like a low bubble. The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, the pseudoparameres are directed upward compared to the thecal shaft, and the claspers are fang-like with ventral excavations plus a rounded, inward-facing swelling around mid length on inner margin.

Discussion. The phylogenetic relationships of this monotypic genus have been documented in the cladistic study of Moulds (2005a) and in the introductory part of this paper. The single species of this genus has been reviewed by Moulds $(1986,1990)$.

Genus MELAMPSALTA Kolenati, 1857

Type species: Cicadetta (Melampsalta) musiva var. caspica Kolenati, 1847, by monotypy.
Boulard $(1988,1998)$ and Moulds (1988) provide detailed discussion on the status, authorship, date and type species of Melampsalta. They concluded that the authorship and date of publication originates from Amyot (1847). However, subsequently the International Commission on Zoological Nomenclature suppressed Amyot's 1847 work (Opinion 2165) making the names in it unavailable for nomenclatorial purposes. The name Melampsalta now dates from Kolenati (1857).

No Australian species has been placed in Melampsalta since Moulds (1990). Many species of Australian Cicadettini were either originally described in Melampsalta or transferred there by Stål (1863b) from Cicadetta. Since
that time many have interchanged several times between Melampsalta, Cicadetta and Pauropsalta. The first catalogue of Australian cicadas (Burns 1957) lists 83 species in Melampsalta, including all species previously placed in Pauropsalta believing the latter synonymous with Melampsalta. However, six years later Metcalf (1963), in his world catalogue, chose Cicadetta to hold these Australian species except for those originally described in Pauropsalta which Metcalf correctly returned to that genus. Subsequently, several authors working on non-Australian cicadas showed that Melampsalta and Cicadetta are in fact not synonymous and should be treated as legitimate separate genera. Consequently, Duffels and van der Laan (1985) in their world catalogue, returned all those Australian species listed in Cicadetta by Metcalf back to Melampsalta, the genus in which they were originally described. Moulds (1988, 1990) evaluated the status of all Australian species then in Melampsalta and Moulds (1990) returned the remaining Melampsalta species to Cicadetta as they were all closer to Cicadetta than to Melampsalta, ending up with a total of 55 species in Cicadetta. See 'Genus Cicadetta' in this review for further details.

Genus MUGADINA gen. n.

Type species: Urabunana marshalli Distant, 1911.
Included species: AUSTRALIAN: emma (Goding \& Froggatt, 1904), comb. n.; festiva (Distant, 1907), comb. n.; marshalli (Distant, 1911), comb. n. OTHERS: none.

Etymology. An arbitrary combination of letters. Feminine.
Distribution (Fig. 161i): Inland central and southern Queensland, inland north-eastern New South Wales, near Armidale on the New England Tablelands of New South Wales, near Griffith in the central west of New South Wales, Kewell in western Victoria and near Wolseley in South Australia (Coombs 1993a, 1995; Moulds 1990; Haywood 2006a).

Diagnosis. Head (Fig. 161g) including eyes about as wide or narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig 161g): pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum; metanotum partly visible at dorsal midline. Fore wings (Fig. 161e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node (but sometimes slightly thickened before node), costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused for much of their length; distance between cross veins r and $r-m$ about equal to or longer than between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation often absent, in some species overlaying veins at bases of apical cells 2 and 3, and sometimes extending along distal ends of veins forming apical cells and onto wing margins; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 161f) with 4 or 5 apical cells (sometimes 3 or 6 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe narrow with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 161h) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Figs $161 \mathrm{~g}, \mathrm{~h}$) bulbous, broadest a little anterior of mid length, very much wider than thorax (approximately 1.4 x wider); tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as long or longer than tergite 3 along dorsal midline; sternites III-VII in cross-section convex, unusually swollen so that each is partly visible in lateral profile. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

FIGURE 161. Genus Mugadina gen.n.: (a) M. marshalli (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, male head and body, dorsal view; (h) the same, underside of male body showing opercula; (i) generic distribution.

Male genitalia (Figs 161a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, claw-like with minimal cavity ventrally; spaced apart; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends with their apices widely separated and approaching the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears' and far broader than long; basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate, junction between theca and basal plate with a functional 'hinge' that is small, and substantially compressed between theca and basal plate; thecal shaft nearly straight, parallel-sided, thick-set; pseudoparameres present, arising subapically, lateral of theca, fused for part of their length, in dorsal view wide apart, diverging throughout their length, in lateral view directed upwards compared to thecal shaft; endotheca concealed; ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Very small to small cicadas. Differs from all other Australian genera in having a combination of fore wing veins M and CuA meeting the basal cell completely fused as one, hind wings with 4 or 5 apical cells (sometimes 3 or 6 if aberrant but usually so only in one wing), the fore wing apical cells similar in length to the ulnar cells and a male abdomen that is markedly swollen, bulbous, much wider than the thorax (about 1.4 x wider) with its widest point a little anterior of mid length. Mugadina is most similar to Paradina and Graminitigrina from which it differs significantly in the male genitalia; the pseudoparameres are very short and arise subapically while those of Paradina and Graminitigrina are long and arise towards the base of the theca.

The male genitalia have an aedeagus with the pseudoparameres fused for half their length or more. Further, the claspers have their apices very wide apart but not as wide as the widest dimensions of the claspers, the aedeagus is thick-set, nearly straight and parallel-sided, the pseudoparameres are very short, broad, arise subapically and extend distal of the gonopore, and the endotheca is concealed.

Mugadina is also superficially similar to Dipsopsalta, Pipilopsalta and Uradolichos because of the swollen male abdomen; it differs from Dipsopsalta in not having short apical cells, from Pipilopsalta and Uradolichos in having the width of head including eyes about as wide or wider than lateral angles of pronotal collar instead of much narrower.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution and biology of the species included in this genus are provided by Moulds (1990) and Haywood (2006a). Further notes on M. marshalli can be found in Ewart (1998a), Coombs $(1995,1996)$ and Popple \& Strange (2002). Notes on M. festiva, including a song analysis, are provided by Coombs (1993a).

Genus MYOPSALTA gen. n.

Type species: Melampsalta crucifera Ashton, 1912.

Included species: AUSTRALIAN: atrata (Goding and Froggatt, 1904), comb. n.; binotata (Goding and Froggatt, 1904), comb. n.; crucifera (Ashton, 1912), comb. n.; lactea (Distant, 1905), comb. n.; mackinlayi (Distant, 1882), comb. n.; waterhousei (Distant, 1905), comb. n.; wollomombii (Coombs, 1995), comb. n. OTHERS: none.

Etymology. From the Greek myo meaning close or shut, and referring to the opercula that close off the tympanal cavity, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 162f): Much of the eastern half of Queensland south from Laura, through the eastern half of New South Wales but excluding most higher altitudes and most coastal districts, through much of Victoria to South Australia as far west as the Eyre Peninsula.

Diagnosis. Head including eyes about as wide as or a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth except in crucifera and wollomombii where it is sometimes present; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than R+Sc; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation either absent or overlaying most veins, absent from crossvein m-cu, veins M_{4} and CuA_{1} and ambient vein (except in lactea and waterhousei); wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 162e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites 3-7; sternites IV-VII in cross-section convex, sternites greatly swollen so that each is visible in lateral profile. Timbals with 3 long ribs spanning the full height of the timbal (and 1 or 2 not so long, and spaced with intermediate short ribs; basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 162a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak absent. Female reproductive system unknown.
Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wing veins M and CuA meeting the basal cell with their stems completely fused as one, the paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth (except some specimens of crucifera and wollomombii that have a mid lateral tooth), male abdominal tergite 2 broad along the dorsal midline (much wider than tergite 3), and the male sternites greatly swollen so that all are usually visible in lateral profile.

The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and claspers that are essentially flat and wide in lateral view and distally parallel in ventral view.

FIGURE 162. Genus Myopsalta gen. n.: (a) M. crucifera (Ashton), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male abdomen, lateral view; (f) generic distribution.

Some species appear very similar to the New Zealand genus Notopsalta but that genus has an ampliate paranotum that bears a mid lateral tooth (see also distinguishing characters under 'Genus Notopsalta' in this review).

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. The songs of Myopsalta species (as Notopsalta) have been analysed by Ewart (1998a). Notes on the distribution, habitat and biology of M. atrata, M. crucifera and M. waterhousei are provided by Moulds (1990). Further notes on Myopsalta species are provided by Coombs (1995, 1996), Emery et al. (2005) and Popple \& Strange (2002). Notes on some undescribed species from Queensland, including song analyses, are provided by Ewart (1988, 1998a, 1998b, 2009a), Ewart \& Popple (2001) and Popple \& Strange (2002).

Genus NANOPSALTA gen. n.

Type species: Pauropsalta basalis Goding and Froggatt, 1904.
Included species: AUSTRALIAN: basalis (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Distribution (Fig. 163f): Northern Queensland from Heathlands Station in the far north of Cape York Peninsula to Mackay, both coastal and inland (Ewart 1993, Moulds 1990).

Etymology. From the Latin nanus meaning dwarf or little and referring to the size of the type species, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Diagnosis. Head (Fig. 163e) including eyes wide, clearly wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax (Fig. 163e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing); no infuscation on ambient vein except at distal end of vein 2 A ; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen in cross-section with sides of tergites straight or weakly convex, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 163a-d). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed with accessory 'tooth'; basal lobes undivided, large, in lateral view projecting outwards, basically triangular; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view Y-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge', small, substantially compressed between theca and basal plate in lateral view; thecal shaft straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, in part or entirely chitinized; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.

FIGURE 163. Genus Nanopsalta gen.n.: (a) N. basalis (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum, dorsal view; (f) generic distribution.

Distinguishing characters. Very small cicadas. The head is clearly wider than the mesonotum, there are usually 5 apical cells on the hind wing (sometimes 6 or 4 if aberrant, but usually so only in one wing) and there is an infuscation on the hind wing at the distal end of vein 2A.

The type species was previously considered to belong to Pauropsalta. Nanopsalta differs from Pauropsalta in the male genitalia; the upper pygofer lobes are not excessively large, long and flat but are moderately developed and bifurcate, with the lower appendage tooth-like and sharply pointed, while the basal pygofer lobes are large, projecting, broad and nearly triangular in lateral view. The theca of Nanopsalta has a unique dorsal groove on the distal half.

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis of Moulds (2005a). Notes on the distribution and biology of the single species included in this genus have been provided by Moulds (1990). Further notes, including an analysis of the song of N. basalis, can be found in Ewart (1993).

Genus NEOPSALTODA Distant

Neopsaltoda Distant, 1910: 415; Distant, 1912a: 22, 23; Ashton, 1921: 95; Schulze, Kükenthal and Heider, 1926-40: 2231; Kato, 1932: 153; Neave, 1940a: 306; Kato, 1956: 66, 79; Burns, 1957: 619; Metcalf, 1963: 155; Duffels and van der Laan, 1985: 54; Moulds, 1990: 72; Moulds, 2005a: 377, 387-391, 412, 413, 430, 431.

Type species: Neopsaltoda crassa Distant, 1910, by monotypy.
Included species: AUSTRALIAN: crassa Distant, 1910. OTHERS: none.
Distribution (Fig. 164g): Known only from the McIlwraith Range, Cape York Peninsula, Queensland (Moulds 1990).

Diagnosis. Head including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 164e): pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota strongly ampliate, evenly rounded, sloping forwards in lateral view; no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 164f) covering rim of distal margin of tympanal cavity, reaching to level of distal margin of tergite 2, overlapping, with very long and straight lateral margin. Male abdomen (Figs $164 \mathrm{e}, \mathrm{f}$) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for over half abdominal length, tergite 3 extended ventrally, the two sides together covering half the width of the ventral surface; sternites IV-VII in cross-section flat except for upward tilted margin. Timbals flat, fully rounded dorsally and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases; timbal covers present.

Male genitalia (Figs 164a-d). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes thickened, well developed; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe fingerlike with broad apex, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through

FIGURE 164. Genus Neopsaltoda Distant: (a) N. crassa Distant, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsolateral view, apex at right; (e) the same, male head and body, dorsal view; (f) the same, underside of male body showing opercula; (g) generic distribution. bpl basal pygofer lobe, upl upper pygofer lobe.
180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Large cicadas. The exceedingly large male tergites 2 and 3, which together clearly occupy more than half the abdominal length, immediately distinguish males. Females cannot be distinguished from those of Psaltoda, q.v.

The male genitalia have a distinctive uncal lobe which, in dorsal view, is broad with an expanded, broad apex (Fig. 164b), plus restraint of the aedeagus by fleshy sinuation prior to the ventral surface of the uncus, characters shared only with Psaltoda and Anapsaltoda.

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis of Moulds (2005a). Notes on the distribution and biology of the single species included in this genus have been provided by Moulds (1990).

Genus NEOPUNIA gen. n.

Type species: Melampsalta graminis Goding and Froggatt, 1904 (Pl. 2, fig. 6).
Included species: AUSTRALIAN: graminis (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. From the Greek neo meaning new, and the generic name Punia to which it is closely allied; thus a new Punia-like genus. Feminine.

Distribution (Fig. 165h): Ashburton River in Western Australia, near Wauchope in Northern Territory and near Mount Isa in north-western Queensland.

The syntypes of N. graminis, the only species in this genus, are recorded as coming from South Australia. However, the Northern Territory was under the administration of South Australia when graminis was described and the syntypes may not have come from South Australia as we know it today. As all confirmed records are from the Northern Territory, the occurrence of the genus in South Australia requires confirmation.

Diagnosis. Head including eyes narrower or a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 165e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 165f) with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 165g) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 165g) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 165a-d). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed with accessory 'tooth'; basal lobes undivided, large, in lateral view projecting outwards, basically triangular; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view Y-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate

FIGURE 165. Genus Neopunia gen.n.: (a) N. graminis (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, underside of male abdomen showing opercula; (h) generic distribution.
with a functional 'hinge', small, substantially compressed between theca and basal plate in lateral view; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, in part or entirely chitinized; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. The fore wing costa is clearly broadest a little before the node, the fore wing radial cell is very long being equal to or longer than distance from its apex to wing tip, there are 5 hind wing apical cells and there is no infuscation on the hind wing at the distal end of vein 2 A . These characters distinguish Neopunia from all other genera except Punia. Males of Neopunia have no translucent tergites (Pl. 2, fig. 6). Females differ from Punia in having an abdomen nearly equal in length to the head plus thorax; in Punia the female abdomen is much longer.

The male genitalia have the upper pygofer lobes moderately developed and bifurcate, with the lower appendage tooth-like and sharply pointed, while the basal pygofer lobes are large, projecting, broad and nearly triangular in lateral view. The aedeagus possesses pseudoparameres that are very long, reaching to near the distal end of the theca, and the basal plate is Y shaped. In all of these characters the male genitalia are similar only to those of Punia and Nanopsalta.

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis of Moulds (2005a). It is closely allied to Punia and Nanopsalta.

Genus NOONGARA gen. n.

Type species: Melampsalta issoides Distant, 1905 (Pl. 2, fig. 10).
Included species: AUSTRALIA: issoides (Distant, 1905), comb. n. OTHERS: none.
Etymology. Derived from the name of the Aboriginal people that inhabited the broad south-west of Western Australia that incorporates the distribution of this genus. Feminine.

Distribution (Fig. 166f): Known only from the Perth region, south-western Western Australia. There are records from Koondoola and Mirrabooka (both suburbs of Perth) (M.R. Williams) and Cataby some 140 km north of Perth (M. Powell).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth, rounded; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 166e) hyaline; short, no longer than length of the body including head; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA usually meeting basal cell with their stems completely fused as one but sometimes independently; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins and $r-m$ variable, sometimes less and sometimes more than distance between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell very short (about half the length of the distance from node to wing tip); infuscations prominent at bases of apical cells 2 and 3, and less so at bases of cells 5 and 7; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe of medium width with vein 3A curved, long, and separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 wide and swollen around dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites 3-7; sternites IV-VII in cross-section

FIGURE 166. Genus Noongara gen. n.: (a) A. issoides (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, right fore wing; (f) generic distribution.
convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large with anterior part mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 166a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus, lobe-like, flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view apically as long as or longer than broad, broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of their length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Differs from all other Australian genera in having the paranota confluent with adjoining pronotal sclerites and without a mid lateral tooth, a very short fore wing radial cell (about half the length of the distance from its apex to wing tip, fore wings that are distinctively infuscated (including infuscation on cross vein $\mathrm{m}-\mathrm{cu}$), and fore wings that are very short (no longer than the length of the body including the head) (Fig. 166e; Pl. 2, fig. 10). The male genitalia have and aedeagus with a typically 'trifid' theca exposing a fleshy endotheca and with pseudoparameres that are parallel for much of their length then diverging in dorsal view.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Genus NOTOPSALTA Dugdale

Type species: Cicada sericea Walker, 1850, by original designation.
Included species: AUSTRALIAN: none. OTHERS: sericea (Walker, 1850).
Excluded species: atrata (Goding and Froggatt, 1904), to Myopsalta gen. n., q.v.
Distribution. Confined to New Zealand.
Distinguishing characters. Small cicadas. Distinguished from all other Cicadettini in having the following combination of characters: ampliate paranotum (lateral margin of pronotal collar) with a small tooth at about mid length, fore wing with distance between cross veins r and $r-m$ (at distal ends of ulnar cells 1 and 2) about equal to or greater than distance between $\mathrm{r}-\mathrm{m}$ and m , an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and pseudoparameres aligned with the ventral support.

Discussion. The Australian species Myopsalta atrata comb. n. was placed in Notopsalta by Dugdale [1972] when he erected the genus. While atrata does superficially resemble Notopsalta, molecular studies by Hill, Marshall and Simon (pers. comm.) placed atrata some distance from the type species sericea. The cladistic analysis presented under 'Justification for new genera' in the introductory part of this work supports this distinction and identifies morphological differences. M. atrata clearly differs from N. sericea in lacking ampliate paranota, lacking a mid lateral tooth on the paranota, having male tergite 2 narrow rather than wide, and having the male sternites swollen so that each is at least partly visible in lateral profile.

Genus OWRA Ashton

Owra Ashton, 1912a: 224; Schulze, Kükenthal and Heider 1926-40: 2417; Neave, 1940a: 492; Burns, 1957: 642; Metcalf, 1963: 252; Duffels and van der Laan, 1985: 248, Moulds, 1990: 184-185; de Boer, 1992b: 18, 19, 20, 22; de Boer, 1993a: 16, 17; de Boer, 1993b: 142; de Boer, 1995a: 8; de Boer, 1995b: 204, 210, 214, 215; de Boer, 1995c: 2, 6; de Boer, 1995 d: $218,219,222,224,225,233$; de Boer, 1996: 352, 354; de Boer and Duffels, 1996a: 115, 168, 170, 171; de Boer and Duffels, 1996b: 301, 304; de Boer, 1997: 91, 92, 93, 96, 97, 98, 106, 107; Moulds, 2005a: 390, 413, 430, 435.

Type species: Owra insignis Ashton, 1912, by original designation.
Included species: AUSTRALIAN: insignis Ashton, 1912. OTHERS: none.
Distribution (Fig. 167g): Confined to the narrow coastal region and coastal mountains of north-eastern Queensland, from near Daintree to Mission Beach (Moulds 1990).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 167e) hyaline; with 10 apical cells (sometimes 9 if aberrant, but usually so only in one wing); a series of usually 4 subapical cells; ulnar cell 3 substantially parallel to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma absent; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1A fused in part; infuscation absent; wing outer margin greatly reduced and in part contiguous with ambient vein. Hind wings (Fig. 167f) with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing) no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula very small, barely developed beyond limits of epimeron 3. Male abdomen in cross-section with sides of tergites concave, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers absent, timbal ribs many and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 167a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer; basal lobes undivided, ill-defined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft ' S ' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. Fore wing with 10 apical cells (rarely 9) and a row of usually 4 subapical cells; fore wing outer margin in part contiguous with ambient vein. This is the only genus with males virtually lacking development of the opercula beyond the epimeron.

The male genitalia have a distinct thecal apex that is U-shaped in dorsal view and sharply pointed in lateral view.

Discussion. De Boer (1995b) defines this genus and discusses its phylogenetic relationships. Moulds (2005a) further discusses phylogenetic relationships. Notes on the distribution and biology of the single species included in this genus are provided by Moulds (1990).

FIGURE 167. Genus $O w r a$ Ashton: (a) O. insignis Ashton, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution.

Genus OXYPLEURA Amyot and Serville

Oxypleura Amyot and Serville, 1943: 469; Westwood, 1843: 33; Agassiz, Erichson and Germar, 1846: 10; Agassiz, 1848: 773; Spinola, 1850: 50; Walker, 1850: 23, 258; Stål, 1855: 89; Walker, 1858a: 1, 2; Walker, 1858b: 308; Desmarest, 1859: 203; Dohrn, 1859: 72; Gerstaecker, 1863: 299; Stål, 1866a: 9; Dallas, 1867: 556; Walker, 1870: 83; Butler, 1874: 195; Distant, 1889: 19; Karsch, 1890a: 86, 103; Kirkaldy, 1903b: 232; Distant 1904a: 296, 297; Goding and Froggatt, 1904: 568; Imhof, 1905: 223; Distant, 1906c: 58; Distant, 1906d: 5; Distant, 1906f: 171; Oshanin, 1906: 1; Matsumura, 1907: 94; Distant, 1912a: 6, 7; Oshanin, 1912: 94; Delétang, 1923: 611; Moulton, 1923: 139; Hesse, 1925: 141; Schulze, Kükenthal and Heider, 1926-40: 2424; Kato, 1932: 221; Chen, 1933: 3; Wu, 1935: 1; Ouchi, 1938: 75; Neave, 1940a: 498; Metcalf, 1944: 154; Kato, 1961: 3; Nast, 1972: 136; Boulard, 1973: 1161, 1162, 1166, 1168, 1184; Hayashi, 1974: 233; Moulds 1990: 12, 31, 52; Moulds, 2005a: 387-389, 392, 412, 430, 433.

Type species: Oxypleura clara Amyot and Serville, 1843, by monotypy.
Included species: AUSTRALIAN: calypso (Kirby, 1889). OTHERS: atkinsoni (Distant, 1912); basalis Signoret, 1891; bufo Walker, 1850; canescens Walker, 1870; centralis (Distant, 1897); cervina (Walker, 1850); clara Amyot and Serville, 1843; ethiopiensis Boulard, 1975; lineatella (Distant, 1905); polita Walker, 1850; polydorus Walker, 1850; quadraticollis (Butler, 1874); spoerryae Boulard, 1980.

Distribution (Fig. 168g): Within Australia restricted to Christmas Island, Indian Ocean; otherwise through Africa, south-east Asia and India.

Diagnosis. Head (Fig. 168f) including eyes about as wide as mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 168f): pronotal collar width at dorsal midline much less than diameter of eyes; paranota strongly ampliate, triangular, sometimes sharply pointed, horizontal in lateral view; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa reducing to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; vein M3 divided by cross vein so that proximal and distal portions nearly equal; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells in some species and usually weak in intensity, also sometimes a hint of infuscation on lateral veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings usually with 6 apical cells, 5 in O. calypso; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat. Male opercula covering rim of distal margin of tympanal cavity, reaching clearly beyond level of distal margin of tergite 2 ; deeply depressed at junction of outer and inner (epimeron 3) sections; overlapping. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers present, flat, fully rounded dorsally and extending to metathorax but not tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 168a-e). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant, deeply divided apically; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft curved in a gentle arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system. Unknown.

Female reproductive system. Ditrysian; length of accessory glands unknown.

FIGURE 168. Genus Oxypleura Amyot and Serville: (a) O. calypso (Kirby), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, basal plate, dorsolateral view; (f) head and pronotum, dorsal view; (g) generic distribution in Australia.

Distinguishing characters. Medium to large cicadas. Clearly differs from other Australian genera in the broad, flat profile of the body. Vein M3 is strongly bowed and very long proximal of the cross vein (about equal in length to that portion distal of the cross vein), a character otherwise found among Australian genera only in Diceropyga.

Discussion. Oxypleura is closely allied to Platypleura Amyot and Serville and to several other exotic genera (mainly from Africa), and for many years it was treated as a junior synonym of Platypleura. Oxypleura is separated from Platypleura mainly by the shape of the uncus of the male genitalia (Boulard 1973). It is not closely allied to any other Australian genus (except perhaps Talcopsaltria) and its inclusion in the Australian fauna stems solely from its presence on Christmas Island, Indian Ocean. The fauna of this island tends towards that of South-East Asia rather than continental Australia. The genus has been partly revised by Boulard (1973). Phylogenetic relationships are shown in the cladistic analysis of Moulds (2005a).

Notes on the distribution and biology of the single Australian species of this genus are provided by Moulds (1990).

Genus PALAPSALTA gen. n.

Type species: Melampsalta eyrei Distant, 1882.

Included species: AUSTRALIAN: circumdata (Walker, 1852), comb. n.; eyrei (Distant, 1882), comb. n.; virgulatus Ewart, 1989, comb. n.; vitellinus (Ewart, 1989), comb. n. OTHERS: none.

Distribution (Fig. 169f): Eastern Queensland, including most of Cape York Peninsula, and thereafter in a broad band inland to Mt Isa and south to Lake Broadwater in the south-east of the State.

Etymology. From the Latin pala, meaning palette and referring to the large palette-like upper pygofer lobes of the male, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Diagnosis. Head including eyes wide, clearly wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum; metanotum partly visible at dorsal midline. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein mcu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells (sometimes 5); no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex but dried museum specimens often deformed. Timbal ribs irregular in size and spaced with prominent intermediate short ribs, usually 4 in number; very large basal dome; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 169a-d). Pygofer with distal shoulders not developed; upper lobes very flat, very large, dominating pygofer between basal lobes and dorsal beak; basal lobes undivided, large, in lateral view projecting outwards, basically triangular but sometimes distally elongate; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view Y-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a small functional 'hinge' substantially

FIGURE 169. Genus Palapsalta gen.n.: (a) P. eyrei (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male reproductive system, dissection with aedeagus removed from pygofer; (f) generic distribution in Australia.
compressed between theca and basal plate in lateral view; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, in part or entirely chitinized; endothecal ventral support absent; thecal apex partly or entirely fleshy, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 169e) with accessory glands short.

Female reproductive system ditrysian; length of accessory glands of common oviduct unknown.
Distinguishing characters. Small cicadas. The head including eyes is broad (clearly wider than mesonotum between wings between wings), and the fore wing costa is broadest a little before the node. Differs from Pauropsalta in the above characters plus the absence of infuscation on the hind wing at the distal end of vein 2 A (although weak infuscation is occasionally present in some individuals), and also notably in the male genitalia which have a large basal lobe that in lateral view is essentially triangular or sometimes distally elongate. Further, unlike many Pauropsalta species, hind wing vein 3A meets the margin at about 90 degrees rather than at an acute angle.

Females appear most similar to those of Taurella but can be distinguished by the lengths of the four vein sections making up the inner margin of the radial cell which in Palapsalta are clearly not similar in length.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) by the inclusion of the type species Pauropsalta eyrei and P. circumdata. Notes on the distribution, biology and songs of the species of this genus are provided by Ewart $(1993,1989 b)$ and Moulds (1990). Notes on seasonal occurrence and plant association of P. circumdata in western Sydney are provided by Emery et al. (2005). Notes on the habitat of P. vitellinus are provided by Popple \& Strange (2002).

Genus PARADINA gen. n.

Type species: Melampsalta leichardti Distant, 1882 (Pl. 2, figs 13a, 13b).
Included species: AUSTRALIAN: leichardti (Distant, 1882), comb. n. OTHERS: none.
Etymology. Derived from the Greek para meaning near, beside, and dina being the latter part of the generic name Mugadina to which it is closely allied. Feminine.

Distribution (Fig. 170e): Inland northern Queensland from near Hughenden and the Clermont district.
Diagnosis. Head (Fig. 170g) including eyes about as wide or narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum; metanotum partly visible at dorsal midline. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node (but sometimes slightly thickened before node), costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused for much of their length; distance between cross veins r and r-m about equal to or longer than between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation often absent, in some species overlaying veins at bases of apical cells 2 and 3, and sometimes extending along distal ends of veins forming apical cells and onto wing margins; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 5 apical cells (sometimes 4 or 6 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe narrow with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen bulbous, broadest a little anterior of mid length, much wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, wider along dorsal midline than any one of tergites 3-7; sternites III-VII
in cross-section convex, unusually swollen so that each is partly visible in lateral profile. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 170a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, restraining aedeagus; large, dominant, claw-like with minimal cavity ventrally; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends, their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view short and broad, apically broadened with 'ears' and far broader than long; basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate, junction between theca and basal plate with a functional 'hinge' that is small, and substantially compressed between theca and basal plate; thecal shaft nearly straight, parallel-sided, thick-set; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of their length with distal portion turned down, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Very small cicadas. Differ from all other Australian genera except Graminitigrina and Mugadina in having a combination of fore wing veins M and CuA meeting the basal cell completely fused as one, hind wings with 5 apical cells (sometimes 4 or 6 if aberrant but usually so only in one wing), the fore wing apical cells similar in length to the ulnar cells and a male abdomen that is markedly swollen and bulbous. Paradina differs significantly from Graminitigrina in the male genitalia which have pseudoparameres that are very short and arise subapically while those of Graminitigrina are very long and arise near the base of the theca. Distinguished from Mugadina in having the male abdomen a little less swollen and genitalia with well developed pseudoparameres, a ventral support and an exposed endotheca. The single known species in this genus is substantially black (Pl. 2, figs 13a, 13b).

The male genitalia have an aedeagus with a typically 'trifid' theca with pseudoparameres that are parallel and abutted on their basal half or so before diverging.

Paradina is also somewhat similar to Dipsopsalta, Pipilopsalta and Uradolichos because of the swollen male abdomen; it differs from Dipsopsalta in not having short apical cells, from Pipilopsalta and Uradolichos in having the width of head including eyes about as wide or wider than lateral angles of pronotal collar instead of much narrower.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Review of selected species

Paradina leichardti comb. n.

(Pl. 2, figs 13a, 13b)

Melampsalta leichardti Distant, 1882: 132, pl. VII, fig 5, 5a, 5b
Pauropsalta leichardti: Goding and Froggatt, 1904: 566
Urabunana segmentaria Distant, 1905g: 274 Syn. n.
Urabunana leichardti: Distant, 1906d: 181

FIGURE 170. Genus Paradina gen. n.: (a) P. leichardti (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) generic distribution.

The type of Urabunana segmentaria is a male while that of Melampsalta leichardti is a female of the same species. I have taken both sexes from near Hughenden and near Clermont, northern Queensland.

The original description gives the spelling 'leichardti'. The species appears to have been named after the Australian explorer Ludwig Leichhardt (Distant appears to have named several species after Australian explorers). However, he never actually stated the derivation of these names and consequently Distant's original spelling of leichardti should be retained (ICZN, 4th edition, Article 32.5.1).

Genus PARNKALLA Distant

Parnkalla Distant 1905e: 26, 29; Distant, 1906d: 128, 133; Ashton, 1914a: 350; Delétang, 1923: 629; Schulze, Kükenthal and Heider, 1926-40: 2535; Kato, 1932: 180, 181; Neave, 1940a: 614; Kato, 1956: 69; Burns, 1957: 638; Metcalf, 1963: 214; Duffels and van der Laan, 1985: 236; Moulds, 1990: 124; Moulds, 2005a: 393, 403, 412, 413, 416, 425, $430,434$.

Type species: Tibicen muelleri Distant, 1882, by original designation.
Included species: AUSTRALIAN: muelleri (Distant, 1882). OTHERS: none.
Excluded species: magna Distant, to Parnquila gen. n., q.v.
Distribution (Fig. 171g): Eastern Queensland south from Coen to the far north-eastern corner of New South Wales (Moulds 1990).

Diagnosis. Head (Fig. 171e) including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 171e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 and at distal end of RA_{2}; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end longer than 2nd cubital cell but clearly less than twice as long; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, clearly separated. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers present but only as a well developed ridge lacking anterior development; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 171a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view V-shaped, the division reaching to theca; basal portion of basal plate directed upwards so as to be nearly parallel with thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 171f) with accessory glands short.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. Distinguished from other Australian genera by its pale strawcoloured body in conjunction with bold infuscations on the fore wings only at the bases of apical cells 2 and 3 and to a lesser extent at the distal end of vein RA_{2}; in these characters it is similar to Tamasa but differs in lacking ampliation of the lateral margin of the pronotal collar which is virtually confluent with the surface of the pronotum.

FIGURE 171. Genus Parnkalla Distant: (a) P. muelleri (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum, dorsal view; (f) male reproductive system, dissection with aedeagus removed from pygofer; (g) generic distribution.

The male genitalia have a characteristic nearly-tubular, short uncus and a basal plate that has its basal position directed upwards so as to be nearly parallel with the thecal shaft, features otherwise found only in Tamasa and Parnquila. However, Parnkalla differs from Tamasa in lacking ornamentation the thecal apex, while the basal plate of Parnkalla differs significantly from that of Parnquila by its deep bifurcation on the distal half and an apical gonopore.

Parnkalla has other similarities with Parnquila but it differs from Parnquila in having the epimeral lobe reaching the operculum. Further, the male timbal covers are substantially reduced in Parnkalla to appear virtually absent but in Parnquila they are well developed and cover about half the timbal cavity.

Discussion. Phylogenetic relationships of this monotypic genus are discussed in Moulds (2005a). The biology of Parnkalla muelleri has been reviewed in detail by Moulds (1990).

Genus PARNQUILA gen. n.

Type species: Parnkalla magna Distant, 1913 (Pl. 1, figs 10a, 10b).
Included species: AUSTRALIAN: hillieri (Distant, 1906), comb. n.; magna (Distant, 1913), comb. n.; venosa (Distant, 1907), comb. n.; unicolor (Ashton, 1921), comb. n. OTHERS: none.

Etymology. From the Latin aquilus meaning dark-coloured or blackish and referring to the blackish colour of the type species, and the prefix parn taken from the name of the genus Parnkalla in which genus the type species was previously located. Feminine.

Distribution (Fig. 172f): Perth (type locality of unicolor) and Cue (type locality of magna) in Western Australia, Hermannsburg (type locality of venosa) and other localities around Alice Springs in the Northern Territory, the north-eastern edge of the Simpson Desert in Queensland (Ewart 2009a), and the south-eastern edge of the Simpson Desert in South Australia.

Diagnosis. Head including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent or nearly so with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion either similar in length to distal portion or longer; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end longer than 2 nd cubital cell but clearly less than twice as long; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 172e) more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, not meeting. Male abdomen (Fig. 172e) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 similar in size to tergites 4-7 except in unicolor where they are slightly larger; sternites III-VII in cross-section convex. Timbal covers present, flat, reduced dorsally and not reaching metathorax, lower margin extending anteriorly from or very near auditory capsule; timbal ribs regular in width and spaced with prominent intermediate short ribs; usually a large basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 172a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant, with characteristic, thick-set lateral process; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply turned through 90° or more; in dorsal view apically rounded and with V-shaped depression basally from which theca arises; basal portion of basal plate directed upwards so as to be nearly parallel with thecal shaft; ventral rib completely fused with basal plate but with an anterior, sclerotized, tubular projection turned backwards;

FIGURE 172. Genus Parnquila gen.n.: (a) P. magna (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male abdomen showing opercula; (f) generic distribution.
junction between theca and basal plate rigid, without a 'hinge'; thecal shaft curved in a gentle arc; pseudoparameres absent; thecal apex lightly sclerotized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening ventral at apex of theca. Male reproductive system unknown.

Female reproductive system unknown.
Distinguishing characters. Small to medium-sized cicadas considerably variable in colour between species (Pl. 1, figs 10a, 10b, type species). Distinguished from all other Australian genera except Burbunga by having the combination of a metanotum entirely concealed at dorsal midline, the basal cell of the fore wing long and slender, the epimeral lobe not reaching the operculum, and the apices of the supra-antennal plate rounded in dorsal view rather than pointed. In addition the male timbal covers are reduced and do not close the timbal cavities.

Distinguished from Burbunga by the male genitalia. The male genitalia have a pair of characteristic lobed lateral processes near the apex of the uncus and a pair of flat clasping processes ventrally (Fig. 172a, b). Further, the vesica opening (gonopore) is ventrally positioned at the apex of the theca and the basal plate bears a fused ventral rib with a distinct anterior tubular projection that turns backwards.

Discussion. The four species placed here appear somewhat diverse in their overall shape and colour but are otherwise remarkably similar in morphology, especially in that of the male genitalia. Certainly hillieri and venosa are sister species with nearly identical body forms. The most divergent of the four species is unicolor that differs in having a slightly ampliate pronotal collar and small differences in the male abdomen but otherwise seems well placed with the other species.

The tribal placement of Parnquila is unclear. It appears to be allied to the Tamasini where the theca of the aedeagus arises more or less vertically from the basal plate. But it differs from the Tamasini in having the epimeral lobe not reaching the operculum, an attribute that better associates Parnquila with the Burbungini. I here tenuously place Parnquila in the Tamasini because the majority of its features appear more compatible there.
Notes on the distribution and habitat of P. hillieri (as Burbunga hillieri) are provided by Moulds (1990). Notes on P. venosa (as Burbunga venosa), including an analysis of its song, are provided by Ewart (2009a).

Genus PAUROPSALTA Goding and Froggatt

Pauropsalta Goding and Froggatt, 1904: 565, 596, 615; Distant, 1905g: 269, 272; Distant, 1906c: 171, 174; Distant, 1906d: 163, 178; Distant, 1907: 246; Froggatt, 1907: 354; Oshanin, 1908: 399; Bergroth, 1911: 188; Horváth, 1911: 607; Ashton, 1912b: 27; Ashton, 1912d: 80; Ashton, 1914a: 355; Horváth 1912a: 605; Oshanin 1912: 96; Ashton 1914a: 355; Hardy, 1918: 71; Davis, 1920: 125; Distant, 1920: 376; Myers, 1922: 9; Myers, 1923: 430; Handlirsch, 1925: 1116; Kato, 1926: 151; Tillyard, 1926: 161; Schulze, Kükenthal and Heider, 1926-40: 2548; Hudson, 1927: 73; Myers, 1928b: 391; Haupt, 1929: 220; Myers, 1929a: 29; Kato, 1932: 38, 111, 385, 386; Chen, 1933: 40; Haupt, 1935: 151; Wu, 1935: 27; Ouchi, 1938: 108; Neave, 1940a: 628; Cooper, 1941: 295; de Seabra 1942: 7; Chen, 1943: 37; McKeown, 1944: 235; Metcalf, 1944: 156; Metcalf, 1947: 163; Gomez-Menor, 1951: 11; Kato, 1956: 25; Gomez-Menor, 1957: 29, 77; Burns, 1957: 645; Dlabola, 1963: 50; Metcalf, 1963: 401-402; Dugdale and Fleming, 1969: 936, 937; Dugdale, 1972: 856, 860, 861, 877, 879, 880; Nast, 1972: 151; Holloway, 1979: 235; Duffels and van der Laan, 1985: 300; Boulard, 1988: 40; Ewart, 1989b: 289-294; Moulds, 1990: 130-131; Boulard, 1993: 109; de Boer, 1995d: 201, 202, 234; de Boer and Duffels, 1996b: 306, 309; Boulard, 1997: 179, 191, 195; Boulard, 1998: 109; Moulds, 2005a: 390, 412, 430, 436.
Cicadetta (Pauropsalta); Horváth, 1911: 607; Horváth, 1912a: 605.
Melampsalta (Pauropsalta); Oshanin, 1912: 96; de Seabra, 1942: 7.
Type species: Cicada mneme Walker, 1850, by original designation.
Included species: AUSTRALIAN: aktites Ewart, 1989; annulata Goding and Froggatt, 1904; aquila Ewart, 1989; ayrensis Ewart, 1989; borealis Goding and Froggatt, 1904; collina Ewart, 1989; corticina Ewart, 1989; dolens (Walker, 1850); elgneri (Ashton, 1912); encaustica (Germar, 1834); extensa Goding and Froggatt, 1904; extrema (Distant, 1892); fuscata Ewart, 1989; infrasila Moulds, 1987; infuscata (Goding and Froggatt, 1904); melanopygia (Germar, 1834); mneme (Walker, 1850); nigristriga Goding and Froggatt, 1904; opaca Ewart, 1989; prolongata Goding and Froggatt, 1904; rubea (Goding and Froggatt, 1904); rubra Goding and Froggatt, 1904; rubristrigata (Goding and Froggatt, 1904); siccana Ewart, 1989; stigmatica Distant, 1905; walkeri Moulds and Owen, 2011. OTHERS: exaequata (Distant, 1892); johanae Boulard, 1993; judithae Boulard, 1997; mimica Distant, 1907; rufifascia (Walker, 1850) [Representatives of these species were not available for examination.]

FIGURE 173. Genus Pauropsalta Goding and Froggatt: (a) P. mneme (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) the same, underside of male body showing opercula; (i) generic distribution in Australia.

Excluded species: The following are synonymised or transferred to other genera as listed.
basalis Goding and Froggatt, 1904, to Nanopsalta gen. n., q.v.
bellatrix Ashton, 1914, to Physeema gen. n., q.v.
circumdata (Walker, 1852), to Palapsalta gen. n., q.v.
dubia Goding and Froggatt, 1904, to Platypsalta gen. n., q.v.
emma Goding and Froggatt, 1904, to Mugadina gen. n., q.v.
eyrei Distant, 1882, to Palapsalta, q.v.
lineola Ashton, 1914, a junior synonym of Dipsopsalta signata, q.v.
nebulosa Goding and Froggatt, 1904, a junior synonym of Pauropsalta rubea, see below
nodicosta Goding and Froggatt, 1904, to Clinata gen. n., q.v.
signata Distant, 1914, to Dipsopsalta gen. n., q.v.
virgulatus Ewart, 1989, to Palapsalta, q.v.
vitellinus Ewart, 1989, to Palapsalta, q.v.
Distribution (Fig. 173i): Throughout much of Australia including Tasmania, especially monsoonal regions but absent from much of the dry interior (Ewart and Popple 2001, Moulds 1990). Also in Papua New Guinea, Philippine Islands, New Caledonia, the Mediterranean Region, Nepal and South Africa although the placement of most of these species in Pauropsalta appears to be erroneous.

Diagnosis. Head (Fig. 173e) including eyes about as wide as mesonotum, sometimes a little narrower, sometimes a little wider; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax (Fig. 173e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 173f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein Cu_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 173g) with 5 or 6 apical cells (sometimes 4 if aberrant, but usually only in one wing); infuscation at distal end of vein 2 A spread on wing margin; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 173h) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 173h) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 173a-d). Pygofer with distal shoulders not developed; upper lobes very flat, very well developed, dominating pygofer between basal lobes and dorsal beak, elongate and usually expanded apically like a pair of horse blinkers; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view tending to be Y shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge'; hinge small, substantially compressed between theca and basal plate in lateral view; thecal shaft straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, entirely chitinized; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system with accessory glands short.

Female reproductive system ditrysian; length of accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Small cicadas. The hind wing infuscation at the distal end of vein 2 A that is spread onto the wing margin, together with the complete fusion or close abutment of veins M and CuA on reaching the basal cell, clearly distinguishes this genus from all others except Caliginopsalta and Nanopsalta. The head of most species is never wider than the mesonotum as it is in Caliginopsalta and Nanopsalta and other similar looking genera such as Taurella and Palapsalta.

The male genitalia clearly differ from those of Caliginopsalta and Nanopsalta, plus most other genera, in having the upper pygofer lobes exceptionally large. The aedeagus shows considerable variation but never has a typically trifid theca or a fleshy endotheca.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) by the inclusion of P. encaustica and the type species P. mneme. Ewart (1989b) has reviewed the Queensland species as well as selected species from other States. He also included analyses of songs. Notes on calling behaviour are provided by Ewart (2001b). The distribution and biology of the species of this genus are also reviewed by Moulds (1990) and Haywood (2006a, 2006b). Notes on seasonal occurrence and plant association of P. mneme and some undescribed Pauropsalta species in western Sydney are provided by Emery et al. (2005). Further notes on species, including song analyses, are provided by Coombs (1996), Ewart (1988, 1993, 1995, 1998a, 2005b), Gwynne et al. (1988), Popple \& Strange (2002), Popple et al. (2008) and Young (1972).

Review of selected species

Pauropsalta rubea (Goding and Froggatt)

Melampsalta rubea Goding and Froggatt, 1904: 651.
Melampsalta nebulosa Goding and Froggatt, 1904: 647. Syn. n.
Cicadetta rubea (Goding and Froggatt): Kirkaldy, 1907b: 309.
Melampsalta geisha Distant, 1915: 50, 51.
Cicadetta geisha (Distant): Metcalf, 1963: 315.
Pauropsalta rubea (Goding and Froggatt): Ewart, 1989b: 333.
Cicadetta nebulosa (Goding and Froggatt): Metcalf, 1963: 363.

Burns (1957) lists the whereabouts of the type of Melampsalta nebulosa as unknown. My search of Australian collections (notably the MM, SAM and ANIC where a number of Goding and Froggatt types are housed), and the collection of the BMNH, has failed to reveal a specimen likely to have type status. The original description, together with the type localities listed i.e. 'Queensland (Tryon); Windsor, N.S.W.', clearly correlate with Pauropsalta rubea. No other species is known to meet these criteria (despite the availability of extensive collections) and M. nebulosa and P. rubea are here considered synonymous.

Genus PHYSEEMA gen. n.

Type species: Cicada quadricincta Walker, 1850.
Included species: bellatrix (Ashton, 1914) comb. n.; convergens (Walker, 1850) comb. n.; labyrinthica (Walker, 1850) comb. n.; latorea (Walker, 1850) comb. n.; quadricincta (Walker, 1850) comb. n. OTHERS: none.

Etymology. From the Greek physema meaning something inflated, a bubble, and referring to the bubble-like swelling at the base of the male operculum. Feminine.

Distribution (Fig. 174e) South-western Western Australia south from Kalbarrie to Cape Le Grand with an isolated population at Kalgoorlie, coastal districts of south-eastern South Australia and in Victoria from near Melbourne.

Diagnosis. Head including eyes about as wide as or a little wider than mesonotum but clearly narrower in convergens; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching
operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one (except in some individuals of P. convergens); vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent or confined to bases of apical cells 2 and 3; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting; base (remnant of epimeron 3) much swollen and bubble-like. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 wide and swollen around dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites $3-7$; sternites IV-VII in crosssection convex, greatly swollen so that each is visible in lateral profile. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal largely free of ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 174a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other (except in convergens); their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that is entirely fleshy; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small to medium-sized cicadas. Distinguished by the following combination of characters: fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the paranota are ampliate with a mid lateral tooth, the distance between fore wing crossveins r and $\mathrm{r}-\mathrm{m}$ is about equal to or longer than $\mathrm{r}-\mathrm{m}$ and m , and the male sternites are greatly swollen so that each is usually visible in lateral profile.

The male genitalia have an aedeagus with a theca that is typically 'trifid' exposing a fleshy endotheca, the hinge of the aedeagus is entirely fleshy and without a chitinous back, and the claspers are essentially flat and wide in lateral view and distally parallel in ventral view.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution, habitat and biology of P. quadricincta and P. convergens are provided by Moulds (1990). Brief notes on the song of P. quadricincta can be found in Bennet-Clark and Young (1994) and Moulds (1990). A study of male P. quadricincta sexual behaviour including song can be found in Gwynne (1987) and Gwynne et al. (1988).

FIGURE 174. Genus Physeema gen. n.: (a) P. quadricincta (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) generic distribution.

Review of selected species

Physeema bellatrix (Ashton), comb. n.

Pauropsalta bellatrix was described from an unstated number of females from the Warren River, Western Australia. The only known syntype is in the South Australian Museum. In size, head and body shape, wing shape and venation, it matches a species found in the extensive sand dunes around the mouth of the Warren River. Colour is not such a close match but the specimen appears discoloured with age and may be partly teneral. This sand dune species is here considered to be P. bellatrix, the males of which clearly place it in the genus Physeema.

A male in the AM, from Cue and labelled as a 'cotype' of Pauropsalta bellatrix, is not bellatrix (nor is it part of the type series) but a specimen of an undescribed Pauropsalta species currently under description by Owen and Moulds (in prep). Pauropsalta bellatrix was described from the 'Warren River', an area with a high annual rainfall; the undescribed Pauropsalta species to which the 'cotype' belongs inhabits only arid regions of Western Australia.

Genus PICTILA gen. n.

Type species: Tibicen occidentalis Goding and Froggatt, 1904 (Pl. 1, fig. 7).
Included species: AUSTRALIAN: occidentalis (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. From the Latin pictilis meaning painted and pertaining to the colorful abdomen of the type species.

Distribution (Fig. 175h): South-western Western Australia in an area bounded by Queen Victoria Rock (near Coolgardie) in the north, Kondinin and Kulin to the west, and Ravensthorpe in the south.

Diagnosis. Head including eyes wide, clearly wider than mesonotum; supra-antennal plate nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 175e) hyaline; with 10 apical cells (sometimes 9 or 11 if aberrant, but usually so only in one wing); subapical cells usually absent (1 or 2 sometimes present when venation is aberrant); ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 175f) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 175g) tending to be linear, both outer and inner margins straight, distal margin broadly rounded, reaching distal margin of tympanal cavity which is almost at level of distal margin of tergite 3, near to each other but clearly not meeting. Male abdomen (Fig. 175g) in cross-section with sides of tergites straight or weakly convex with distinct bend at lower third to the vertical, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers absent; timbal ribs many (usually 8), and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases.

Male genitalia (Figs 175a-d). Pygofer with distal shoulders not developed; upper lobes flat, small, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view basally divided into two discs with apical arms lobe-like; basal portion of basal plate directed forwards away from thecal shaft; ventral rib rod-like with attachment only at ends; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through some 1400; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

FIGURE 175. Genus Pictila gen.n.: (a) P. occidentalis (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) underside of male abdomen showing opercula; (h) generic distribution.

Female abdominal segment 9 just a little longer than an equilateral triangle in dorsal view; ovipositor sheath not passing distal ends of anal styles. Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small cicadas. Differs from all other Australian genera by having a broad head that is clearly wider than the mesonotum, 10 fore wing apical cells (sometimes 9 or 11 in aberrant specimens) and veins M and CuA meeting the basal cell separately. The single known species in the genus is brightly coloured orange with black and red markings (Pl. 1, fig. 7).

The male genitalia have a distinctive aedeagus with the basal plate possessing a rod like ventral rib clearly visible in lateral view and a simple, tubular thecal shaft turned through some 140 o basally.

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis of Moulds (2005a).

Genus PIPILOPSALTA Ewart

Pipilopsalta Ewart, 2005a: 476.
Type species: Pipilopsalta ceuthoviridis Ewart, 2005, by original designation (Pl. 2, fig. 9).
Included species: AUSTRALIAN: ceuthoviridis Ewart, 2005. OTHERS: none.
Distribution (Fig. 176f): Widespread though inland Queensland south from near Mount Isa and with a single record from South Australia from Neales River south of Oodnadatta (Ewart 2005a).

Diagnosis. Head including eyes about as wide or a little narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 176e) hyaline; infuscation either absent or weak and confined to bases of apical cells 2 and 3; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and r-m about equal to or longer than between r-m and m; apical cells mostly about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 176e) with 5 or 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male hind leg meracanthus short, rounded. Male opercula reaching a little beyond margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen a little wider than thorax; tergites in cross-section with sides weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, unusually swollen so that each is partly visible in lateral profile. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases.

Male genitalia (Figs 176a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; claw-like with minimal cavity ventrally; unfused; lacking a rounded,

FIGURE 176. Genus Pipilopsalta Ewart: (a) P. ceuthoviridis Ewart, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore and hind wings; (f) generic distribution.
inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view exceedingly short, almost without length, apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, fused for half their length or more, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, less than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from most genera by the following combination of characters: the fore wing veins M and CuA meet the basal cell with their stems completely fused as one, fore wing apical cells 3-6 are about as long or longer than the ulnar cells, the paranota are confluent with adjoining pronotal sclerites and lack a mid lateral tooth, the male abdomen is not excessively wider than the thorax (less than 1.4 x wider), and the fore wing costa is gently and evenly curved. The only known species in this genus, P. ceuthoviridis, is almost entirely green (Pl. 2, fig. 9)

The male genitalia have claspers that are claw-like with minimal cavity below and they diverge towards their distal ends; an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, an exceedingly short basal plate and pseudoparameres that are fused for half their length or more.

Pipilopsalta is similar to Dipsopsalta, Mugadina and Uradolichos because of the swollen male abdomen; it differs from all except some undescribed Mugadina species in its green colouration and from all Mugadina in having the width of head including eyes clearly narrower than lateral angles of pronotal collar instead of about the same.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution, habitat and song of P. ceuthoviridis, together with figures of the adult, are included in Ewart (2005a).

Genus PLATYPLEURA Amyot and Serville

Type species: Cicada stridula Linnaeus, 1758, by subsequent designation by Westwood, 1843: 33.

Included species: AUSTRALIAN: none. OTHERS: many species occurring through Africa, India and Southeast Asia.

Excluded species: tepperi Goding and Froggatt, 1904, transferred to Yanga as a junior synonym of Y. guttulata (Signoret, 1860) by Moulds (2010).

Discussion. Goding and Froggatt (1904) described this species from the Northern Territory. Burns (1957) considered the species of doubtful Australian origin. Moulds (2010) showed that the one remaining type of tepperi was in fact a specimen of the Madagascan species Yanga guttulata. Thus, Goding and Froggatt's specimens of Platypleura tepperi are considered erroneously labelled and both the species and genus do not occur in Australia.

Phylogenetic relationships of Platypleura are shown in the cladistic analysis of Moulds (2005a) by the inclusion of the type species P. stridula.

Genus PLATYPSALTA gen. n.

Type species: Pauropsalta dubia Goding and Froggatt, 1904 (Pl. 2, fig. 8).
Included species: dubia (Goding and Froggatt, 1904), comb. n.; mixta (Distant, 1914), comb. n.
Etymology. From the Greek platys meaning broad, wide, level, flat, and referring to the very broad fore wings of the species in this genus, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 177g): Inland south-eastern Queensland from Edungalba (approximately 100 km SW of Rockhampton), through central New South Wales to central Victoria and from Lucindale in south-eastern South Australia.

Diagnosis. Head including eyes about as wide as or a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 177e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m - cu so that proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins r and r-m about equal to or longer than between r-m and m; apical cells mostly very much shorter than ulnar cells; radial cell very long (about equal to or longer than distance from its apex to wing tip); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 177f) with 5 or 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites 3-7; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 177a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a very small, obtusely angular apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view parallel for much of their length then diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Very small cicadas, substantially black in colour (Pl. 2, fig. 8). Distinguished from all other genera by the following combination of characters: fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the fore wing radial cell is very long (about equal to or longer than the distance from its apex to wing tip) and the fore wings are short, wide and very rounded, about 2.4 x longer than wide.

FGURE 177. Genus Platypsalta gen. n.: (a) P. dubia (Goding and Froggatt), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, male fore wing; (f) the same, male hind wing; (g) generic distribution.

The male genitalia have claspers that are essentially flat and wide in lateral view with an overhanging lip along the outer margin, the aedeagus has a typically 'trifid' theca exposing a fleshy endotheca, and the pygofer dorsal beak is very small, undeveloped and obtusely angular.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Further notes on P. dubia, including a song analysis, are provided by Ewart (1998a).The species treated as P. mixta in Moulds (1990) is not that species but an undescribed species in this genus.

Genus PLERAPSALTA gen. n.

Type species: Cicada multifascia Walker, 1850 (Pl. 2, fig. 17).
Included species: AUSTRALIAN: incipiens (Walker, 1850), comb. n.; multifascia (Walker, 1850), comb. n. OTHERS: none.

Etymology. From the Latin plerus meaning abundant and referring the large numbers that the species of this genus are sometime found, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 178f): South-eastern Queensland south from the Thangool district, central western Queensland as far west as Blackall and Charleville, through eastern New South Wales to Sydney and south-western New South Wales between Hay and Mildura.

Diagnosis. Head (Fig. 178e) including eyes about as wide as or a little wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax (Fig. 178e): pronotum in dorsal view narrowing towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, usually no mid lateral tooth but present occasionally; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline, without infuscations; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells, 5 in aberrant specimens but usually only in one wing; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbal covers absent; timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases.

Male genitalia (Figs 178a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to
each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas, the two known species having a fore wing length under 18 mm ; coloured black with orange markings (Pl. 2, fig. 17). Distinguished from all other genera by the following combination of characters: fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the pronotum narrows towards the posterior, the paranota are confluent with adjoining pronotal sclerites and usually without a mid lateral tooth but present in some specimens, and the posterior margin of the timbal cavity has a low ridge on its lower half.

The male genitalia have claspers that are essentially flat and wide in lateral view and distally parallel in ventral view, and the aedeagus has a typically 'trifid' theca exposing a fleshy endotheca.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution, habitat and biology of P. incipiens (as Cicadetta murrayensis) are provided by Moulds (1990). Ewart \& Popple (2001) also provide notes on this species including an analysis of its song. Notes on seasonal occurrence and plant association of P. multifascia in western Sydney are provided by Emery et al. (2005).

Review of species

Plerapsalta incipiens (Walker), comb. n.

Cicada incipiens Walker, 1850: 189
Pauropsalta incipiens (Walker): Goding and Froggatt, 1904: 623
Melampsalta incipiens (Walker): Distant, 1906d: 175
Melampsalta murrayensis Distant, 1907: 421. Syn. n.
Cicadetta incipiens (Walker): Duffels and van der Laan, 1985: 285
The syntypes of murrayensis (a male in BMNH and a male in ANIC with similar data) are conspecific with the female holotype of incipiens (in BMNH).

Ashton (1912b) was wrong in treating Melampsalta abbreviata Goding and Froggatt, 1904, as a different taxon from Cicada abbreviata Walker, 1862, on the basis of Goding and Froggatt determinations in MM and MV and then including the former in the synonymy of incipiens. The description of abbreviata by Goding and Froggatt is an exact paraphrase of Walker's original description of abbreviata and was obviously intended for Walker's species; further, Goding and Froggatt state that they had not previously seen this species (Goding and Froggatt 1904: 562).

Distribution. Moulds (1990) recorded this species from Hay and near Mildura, New South Wales. Ewart \& Popple (2001) recorded it from Blackall and Charleville in the central west of Queensland. It is now known to occur widely through inland areas of south-eastern Queensland including the Thangool district (R. Eastwood), Augathella (Hill, Marshall and Moulds), Windorah (G.B. Monteith), and near Muckadilla (A.J. Emmott), and through New South Wales along the Western Slopes of the Great Dividing Range to Tamworth (L.R. Greenup). The type locality of murrayensis is Victoria and NW Murray River while that of incipiens is Adelaide but there are no confirmed records from the latter.

FIGURE 178. Genus Plerapsalta gen. n.: (a) P. multifascia (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, head and pronotum, dorsal view; (f) generic distribution.

Plerapsalta multifascia (Walker), comb. n.

(Pl. 2, fig. 17)

Cicada multifascia Walker, 1850: 185
Cicada singula Walker, 1850: 186
Cicada obscurior Walker, 1850: 187
Melampsalta multifascia (Walker): Stål, 1862a: 484
Pauropsalta multifascia (Walker): Goding and Froggatt, 1904: 625
Melampsalta singula (Walker): Distant, 1906d: 175
Cicadetta multifascia (Walker): Kirkaldy, 1907b: 308
Cicadetta singula (Walker): Metcalf, 1963: 381
Stål (1862a) placed singula as a junior synonym of multifascia. Distant (1906d) reinstated singula to specific rank and subsequent authors followed that decision. Burns (1957) erroneously considered multifascia Walker to be a different taxon from multifascia Stål but I can find no evidence supporting such a decision.

I have examined the holotype female of Cicada singula (in BMNH) and the male holotype of C. obscurior (in BMNH); comparisons with material in my collection show that they are conspecific. The type of C. multifascia appears to be lost but accepting the synonymy of C. obscurior and C. multifascia of Stål (1862a) which has never been disputed, it follows that C. multifascia, C. obscurior and C. singula are synonymous. I therefore return C. singula to junior synonymy of C. multifascia as originally proposed by Stål (1862a).

Following the principle of first reviser (see Code, Article 24), the name multifascia takes priority following the choice of Stål (1862a).

Nothing has been published on the identity of this species since its original description by Walker in 1850. It is similar in size and general pigmentation to P. incipiens (figured in Moulds 1990, Pl. 17, figs 5, 5a, under its synonymic name Cicadetta murrayensis) but it can be distinguished from that species by having reduced orange colouring on the abdomen in both sexes; on P. incipiens the orange dominates the abdomen whereas on P. multifascia the abdomen is dark with the orange confined to the distal margins of the sclerites only.

Distribution. The limited number of available records show the distribution to extend from Toowoomba and Canungra (A. Ewart) in south-eastern Queensland and in New South Wales along the eastern foothills of the Great Dividing Range through Kyogle, the foothills of Barrington Tops to western Sydney.

Genus PSALTODA Stål

Psaltoda Stål, 1861: 613; Stål, 1862a: 483; Stål, 1866a: 6; Marschall, 1873: 378; Distant, 1882: 125; Atkinson, 1886: 178; Karsch, 1890a: 86, 106; Kirby, 1896: 458; Horváth, 1900: 641; Distant, 1904a: 302, 303; Goding and Froggatt, 1904: 564, 567, 584; Jacobi, 1905: 432; Distant, 1906d: 27, 28; Froggatt, 1907: 349; Distant, 1910: 415; Ashton, 1912b: 23; Distant, 1912a: 22; Ashton, 1914a: 346; Ashton, 1914b: 13; Ashton, 1921: 92, 96; Handlirsch, 1925: 1117; Singh-Pruthi, 1925: 190; Schulze, Kükenthal and Heider, 1926-40: 2877; Kato, 1932: 9, 153; Neave, 1940a: 951; Cooper 1941: 295; Metcalf, 1944: 154; Metcalf, 1947: 163; Kato, 1956: 66, 79; Burns, 1957: 615; Metcalf, 1963: 149; Boulard, 1965: 803; Young, 1973: 378; Popov, 1975a: 34; Popov, 1975b: 288; Moulds, 1984: 27, 30-32; Duffels and van der Laan, 1985: 52; Moulds, 1990: 74; Moss and Moulds, 2000: 47; Moulds, 2002: 325-326; Moulds, 2005a: 377, 387-391, 412, 413, 430, 431.

Type species: Cicada moerens Germar, 1834, by subsequent designation by Distant, 1904a: 303.
Included species: AUSTRALIAN: adonis Ashton, 1914; antennetta Moulds, 2002; aurora Distant, 1881; brachypennis Moss and Moulds, 2000; claripennis Ashton, 1921; flavescens Distant, 1892; fumipennis Ashton, 1912; harrisii (Leach, 1814); insularis Ashton, 1914; maccallumi Moulds, 2002; magnifica Moulds, 1984; moerens (Germar, 1834); mossi, Moulds, 2002; pictibasis (Walker, 1858); plaga (Walker, 1850). OTHERS: none.

Distribution (Fig. 179k): Eastern Australia, both coastal and inland, from near Cooktown in north-eastern Queensland through NSW, the ACT and Victoria to Adelaide in South Australia and in Tasmania (Moulds 1990, Haywood 2006a).

Diagnosis. Head (Fig. 179e) including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 179e): pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota strongly ampliate, evenly rounded, sloping

—.

(c) Genus Psaltoda Stål: (a) P. moerens (Germar), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male head and body, dorsal view; (f) underside of male body showing opercula; (g) the same, fore wing; (h) the same, hind wing; (i) male reproductive system, dissection with aedeagus removed from pygofer, (j) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (k) generic distribution. ul upper lobe, $b l$ basal lobe.
forwards in lateral view; no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 179g) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1 A fused in part; infuscation overlaying veins on some species only, overlaying some or all veins at bases of apical cells 2-7, also sometimes at extremities of longitudinal veins near ambient vein; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 179h) with 6 apical cells; in some species infuscation along much of ambient vein; width of 1 st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 179f) covering rim of distal margin of tympanal cavity, reaching to or just passing level of distal margin of tergite 2 , very long and straight along lateral margin which is strongly upturned; overlapping; meeting or overlapping timbal covers. Male abdomen (Figs 179e, f) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; sternites IV-VII in cross-section entirely flat. Timbal covers present, flat, fully rounded dorsally and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 179a-d). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes thickened, well developed; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe fingerlike with very broad apex, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90° or more; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft recurved basally through 180° or more, J shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 179i) with accessory glands long.

Female reproductive system (Fig. 179j) ditrysian; accessory glands of common oviduct short, no longer than common oviduct.

Distinguishing characters. Medium to large cicadas. Distinguished from most other Australian genera by the broad head (clearly wider than mesonotum), in conjunction with a broad pronotal collar with strongly ampliate lateral margins and very flat male sternites IV-VII. Psaltoda differs from Neopsaltoda in having abdominal tergites 2 and 3 in the males accounting for no more than half the length of the abdomen while in Neopsaltoda tergites 2 and 3 clearly account for more than half. Psaltoda differs from Anapsaltoda by having the fore wing anal lobes hyaline rather than completely suffused bright orange and the supra-antennal plates not curved under the head so that when viewed ventrally their rims are aligned with the anterior margin of the vertex.

The male genitalia have a distinctive uncal lobe which, in dorsal view is broad with an expanded broad apex (Fig. 179b), and restraint of the aedeagus by fleshy sinuation prior to the ventral surface of the uncus, characters shared only with Anapsaltoda and Neopsaltoda. The pygofer is narrow in lateral view.

Discussion. Most species in this genus are morphologically very similar but two possess notable autapomorphies; P. antennetta has antennae with foliate distal segments while P. adonis has much expanded male opercula that cover a substantial proportion of the timbal covers.

Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) based on the type species P. moerens. Phylogenetic relationships within the genus are discussed in Moulds (2002). Moulds (1990) provides notes on the distribution and biology of many of the species in this genus. Analyses of songs and calling behaviour can be found in Bennet-Clark \& Young (1994), Emery et al. (2005), Ewart (1995, 2001b), Moss \& Moulds (2000) and Young \& Josephson (1983). Further notes on the species of this genus are provided by Bashford (1997), Burwell (1991), Coombs (1996), Dunn (1998), Ewart (2001a), Faithfull (2010), Moss (1989), Moss and Moulds (2000), Moulds (2002), Popple \& Strange (2002), Steinbauer (1997).

Genus PUNIA gen. n.

Type species: Pauropsalta minima Goding and Froggatt, 1904.
Included species: AUSTRALIAN: minima (Goding and Froggatt, 1904), comb. n. OTHERS: none.
Etymology. Derived from the Anglo-Saxon 'puny' and referring to the small size of the species in this genus, amongst the smallest cicadas known. Feminine.

Distribution (Fig. 180h): The far northeast of Western Australia from near Wyndam to Kununurra, the Top End of the Northern Territory south to Mataranka, and Cape York Peninsula in northern Queensland between Iron Range and Mt Garnet (Moulds, 1990). This distribution includes some undescribed species and the true distribution of P. minima is more confined (Moulds, in prep).

Diagnosis. Head (Fig. 180e) including eyes wide, clearly wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 180f) hyaline; infuscation absent or as weak suffusion on apical veins; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; radial cell very long (longer than distance from its apex to wing tip); basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma present; vein CuA straight or only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1A fused in part; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 180g) with 5 apical cells (sometimes 6 or 4 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3 A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); tergites $3-6$ (plus 7 in some species) lightly sclerotised and translucent; sternites III-VII in cross-section convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 180a-d). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed with accessory 'tooth'; basal lobes undivided, large, in lateral view projecting outwards, basically triangular but sometimes distally elongate; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view Y-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate with a functional 'hinge', small, substantially compressed between theca and basal plate in lateral view; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, in part or entirely chitinized; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Very small cicadas. The head is clearly wider than the mesonotum, the fore wing costa is clearly broadest a little before the node, the fore wing radial cell is very long (longer than the distance from its apex to the wing tip), there are 5 hind wing apical cells (sometimes 4 or 6 if aberrant, but usually only in one wing) and no hind wing infuscation. These characters distinguish Punia from all other genera except Neopunia.

Distinguished from Neopunia by the length of the fore wing radial cell; that of Neopunia is shorter than the distance from its apex to wing tip. Males of Punia have a very characteristic abdomen on which tergites 3-6 (and for some undescribed species, also 7) are translucent; those of Neopunia are never translucent.

The male genitalia have distinctive upper pygofer lobes that are moderately developed, bifurcate with the lower appendage tooth-like and sharply pointed. The aedeagus possesses pseudoparameres that are very long, reaching to near the distal end of the theca and the basal plate is Y-shaped. In all these characters the male genitalia are similar to those of Neopunia and Nanopsalta.

FIGURE 180. Genus Punia gen.n.: (a) P. minima, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) generic distribution.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) based on the type species P. minima. Notes on the distribution and biology of the single described species in this genus have been provided by Moulds (1990).

Genus PYROPSALTA gen. n.

Type species: Cicada melete Walker, 1850.
Included species: AUSTRALIAN: melete (Walker, 1850), comb. n. OTHERS: none.
Etymology. From the Greek pyropos meaning fiery or fiery-red and referring to the fiery-red markings on the type species, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 181f): South-western Western Australia south from Dongara to Windy Harbour.
Diagnosis. Head including eyes about as wide as or wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota weakly ampliate, with a mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 181e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting; base (remnant of epimeron 3) much swollen and bubble-like. Male abdomen (fig. 181e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 wide and swollen around dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites $3-7$; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome very large; anterior part of timbal largely free of ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 181a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, in lateral view distally turned upwards and somewhat hook-like; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, wide in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that is entirely fleshy; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view wide apart and diverging throughout their length, in lateral view directed

FIGURE 181. Genus Pyropsalta gen. n.: (a) P. melete (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male body showing opercula; (f) generic distribution.
upwards compared to thecal shaft with proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished by the following combination of characters: fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the paranota are ampliate with a mid lateral tooth, the distance between fore wing crossveins r and $r-m$ is much less than the distance between r-m and m, and the anterior part of the male timbals is largely free of ribs.

The male genitalia have an aedeagus with a theca that is typically 'trifid' possessing an exposed fleshy endotheca, with pseudoparameres that are wide apart and diverging throughout their length, and claspers that are essentially flat and wide in lateral view and distally parallel in ventral view.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the synonymy, distribution, biology and song of P. melete are provided by Gwynne et al. (1988) and Moulds (1990). Notes on the calling behaviour and song of an undescribed species can be found in Gwynne et al. (1988).

Genus QUINTILIA Stål

Type species: Cicada rufiventris Walker, 1850, by subsequent designation by Distant 1905f.
Included species: AUSTRALIAN: none. OTHERS: Some 20 species, all from Africa.
Excluded species: infans (Walker, 1850), transferred to Terepsalta gen. n., q.v.
Distinguishing characters. Small cicadas. The genus has been ill-defined. Examination of the type species and one other (possibly Q. conspersa Karsch) revealed the following notable characters. Fore wing vein $\mathrm{R}+\mathrm{Sc}$ is swollen so that the costal vein (C) is lower than $\mathrm{R}+\mathrm{Sc}$; male timbal covers are absent; the aedeagus lacks pseudoparameres and a basal hinge. No Australian species fulfils this combination of attributes.

Discussion. The placement of infans in Quintilia is clearly erroneous when male genitalic characters are considered. When Distant (1906d) transferred infans to Quintilia he gave no reason for doing so apart from the implied characters listed in his key to genera. These include only wing and head characters that occur widely throughout the Cicadidae. With the removal of infans, Quintilia is no longer represented in Australia and will not be considered further.

Genus SAMAECICADA Popple and Emery

Samaecicada Popple and Emery 2010: 147-156.
Type species: Pauropsalta subolivacea Ashton, 1912, by original designation (Pl. 2, fig. 14).
Included species: AUSTRALIAN: subolivacea (Ashton, 1912). OTHERS: none.
Distribution (Fig. 182e): Known only from New South Wales in the vicinity of Sydney.
Diagnosis. Head including eyes about as wide as or wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; dome of cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline, without infuscations; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that
proximal portion shortest; veins CuP and 1A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ shorter than between r-m and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell a little longer than the distance from its apex to wing tip; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells (5 or 7 if aberrant); apical cell 1 very small; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe tending narrow with vein 3A curved, about half the length of anal lobe, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, clearly not developed around meracanthus, apically broadly rounded, meeting but not overlapping. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex, tending swollen so that all are partly visible in lateral profile. Timbals with 2 or three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 182a-d). Pygofer in ventral view ovoid to sub ovoid in shape, tending slender with upper pygofer lobes aligned with sides of pygofer; pygofer with distal shoulders not developed; upper lobes well developed, long and slender and gradually tapering to a blunt point, set well away from dorsal beak; basal lobes absent; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus reduced to a very small chitinous patch without length, effectively absent. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, narrow in lateral view, strongly arched with sweeping upturned distal end; fused for a short distance proximal to upturned end; distally parallel to each other. Aedeagus with basal plate in lateral view arched, weakly depressed on dorsal midline, in dorsal view longer than broad, T-shaped, basal portion of basal plate directed forwards away from thecal shaft, ventral rib ridge-like and completely fused with basal plate; junction between theca and basal plate ridged, without a 'hinge'; thecal shaft slender and almost filiform, curved in a sweeping arc; pseudoparameres absent; endotheca concealed; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening subapical on theca. Male reproductive system unknown. Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Distinguished from most other genera by having fore wing veins M and CuA with their stems completely fused as one, no fore or hind wing infuscations, fore wing apical cells $2-7$ mostly similar in length to the ulnar cells, and hind wing apical cell 1 very small.

The male genitalia are very distinctive; the pygofer basal lobes are absent, the upper lobes are very long, the uncus is so reduced as to be effectively absent, and the gracile aedeagus lacks pseudoparameres and a flexible junction between the theca and basal plate.

Within the Australian fauna, the general appearance of Samaecicada (Pl. 2, fig. 14) is similar to species of Taurella as noted by Popple and Emery (2010). The very small hind wing apical cell 1 clearly separates Samaecicada from Taurella and the males of Taurella also differ in having well developed basal lobes to the pygofer and eight long timbal ribs.

Discussion. Popple and Emery (2010) provide notes on the identity, distribution, habitat and behaviour of S. subolivacea, the only species in the genus.

The features of the male genitalia highlighted above under Distinguishing Characters suggest that S. subolivacea is highly derived. The well developed claspers and basal fusion of fore wing veins M and CuA are the only attributes pointing to the placement of Samaecicada in the tribe Cicadettini. The absence of pseudoparameres is remarkable and suggests that Samaecicada may in fact not belong to the Cicadettini although it appears best retained there at this time. Popple and Emery suggested that Samaecicada may be allied to Nigripsalta de Boer from New Guinea and Fijipsalta Duffels from Fiji based on similarities in the theca and upper pygofer lobes, and the absence of basal lobes in Fijipsalta. There may well be some association with these genera but unlike Samaecicada both Nigripsalta and Fijipsalta have well developed pseudoparameres suggesting that the association is not close.

FIGURE 182. Genus Samaecicada Popple and Emery: (a) S. subolivacea (Ashton), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution.

Genus SIMONA gen. n.

Type species: Melampsalta sancta Distant, 1913 (Pl. 1, fig. 11).

Included species: AUSTRALIAN: sancta (Distant, 1913), comb. n. OTHERS: none.
Etymology. Named in honour of Prof. Chris Simon in recognition of her dedication in pursuing knowledge on cicadas, not only through her own publications but also through her unerring support of other people's work.

Distribution (Fig. 183e): Known only from Cue in Western Australia.
Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $\mathrm{r}-\mathrm{m}$ about equal to or longer than between $\mathrm{r}-\mathrm{m}$ and m ; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 wide, much wider along dorsal midline than any one of tergites 3-7; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with 3 long ribs spanning the full height of the timbal (and 1 or 2 not so long, and spaced with prominent intermediate short ribs; basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 183a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; claw-like with minimal cavity ventrally; unfused; lacking a rounded, inwardfacing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of their length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length (no more than about half the length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

FIGURE 183. Genus Simona gen. n.: (a) S. sancta (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) generic distribution.

Distinguishing characters. Small cicadas. Distinguished from all other genera by having the combination of fore wings with veins M and CuA meeting the basal cell with their stems completely fused as one, hind wings with 6 apical cells, paranota confluent with adjoining pronotal sclerites and lacking a mid lateral tooth, and a pronotum that widens towards the posterior. The male genitalia have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, and claspers that are claw-like with diverging distal ends.

Distinguished from the closely allied Chelapsalta puer by the shape of the pronotum that widens towards the posterior. Further, the male of S. sancta (Pl. 1, fig. 11) has abdominal segment 2, where it forms the posterior margin of the timbal cavity, very angular; that of C. puer is very rounded.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper.

Simona sancta is very similar morphologically to Chelapsalta puer, the most notable difference being the shape of the pronotum; that of S. sancta widens towards the posterior, that of C. puer narrows towards the posterior. Molecular studies by Hill, Marshall, Simon, et al. (pers. comm.) support the generic separation of these two species because at least one other well-defined genus separates them phylogenetically. It is for this reason that I place them here in separate genera.

Review of selected species

Simona sancta (Distant), comb. n.

 (Pl. 1, fig. 11)Melampsalta sancta Distant, 1913a: 490
Melampsalta subglusa [sic] Ashton, 1914a: 354 [misspelling]. Syn. n.
Melampsalta subgulosa (Ashton): Ashton, 1915: 91 [corrected spelling]
Cicadetta sancta (Distant): Duffels and van der Laan, 1985: 291
Cicadetta subgulosa (Ashton): Duffels and van der Laan, 1985: 292
The female holotype of sancta (in BMNH) is conspecific with the male holotype of subgulosa (in SAM).

Genus SYLPHOIDES gen. n.

Type species: Melampsalta arenaria Distant, 1907.
Included species: AUSTRALIA: arenaria (Distant, 1907), comb. n. OTHERS: none.
Etymology. From the French sylphe, and meaning a fairylike spirit of the air. Feminine.
Distribution (Fig. 184j): Coastal New South Wales, always in the vicinity of beach sand dunes (Moulds 1990) and in Victoria from Lakes Entrance (Dunn 1991).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 184f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one (usually so; abutted on some individuals); vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 184g) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male hind leg meracanthus characteristically rudimentary and not developed into a flat spine. Male opercula (Fig. 184h) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 184h) in crosssection with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

FIGURE 184. Genus Sylphoides gen. n.: (a) S. arenaria (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, apex of aedeagus dorsolateral view; (e) the same, basal plate, dorsal view, apex at top; (f) the same, fore wing; (g) the same, hind wing; (h) the same, underside of male body showing opercula; (i) male reproductive system, dissection with aedeagus removed from pygofer; (j) generic distribution.

Male genitalia (Figs 184a-e). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that is large and highly visible in lateral view; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating distal of thecal base; endothecal ventral support absent; thecal apex partly chitinized; thecal subapical cerci absent; flabellum absent; conjunctival claws absent but nevertheless with a pair of characteristic claw-like appendages apically on theca; vesica retractable, vesical opening apical on theca; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 184i) accessory glands short.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. The head including eyes is about equal in width to the pronotum; fore wing veins M and CuA meet the basal cell either with their stems fused or abutted; fore wing infuscations are absent; the hind wing has 6 apical cells and there is no infuscation at the distal end of hind wing vein 2 A .

The above characteristics distinguish Sylphoides from all other Australian genera except Birrima, Notopsalta, Kobonga, Kikihia and Yoyetta. Males of Sylphoides clearly differ in their distinctive aedeagus which has a pair of pseudoparameres dorsal on the theca and two claw-like appendages at the thecal apex. Females differ from Notopsalta and Birrima in having the ovipositor sheath extending clearly beyond the level of abdominal segment 9 but far less than half the length of the dorsal midline of abdominal segment 9. They differ from Kobonga in having fore wing apical cells more or less similar in length to the ulnar cells instead of very much shorter. Females are structurally similar to those of Kikihia and Yoyetta.

Discussion. Notes on the distribution, habitat and biology of this species are provided by Moulds (1990).

Genus TALCOPSALTRIA Moulds

Talcopsaltria Moulds 2008: 209-212.

Type species: Talcopsaltria olivei Moulds, 2008, by original designation (Pl. 1, fig. 2).
Included species: AUSTRALIAN: olivei Moulds, 2008. OTHERS: none.
Distribution (Fig. 186i): Cape York Peninsula, Queensland, south from Heathlands, through the Coen and Laura districts to Archer Point near Cooktown (Moulds 2008b).

Diagnosis. Head including eyes wider than mesonotum but clearly narrower than lateral angles of pronotal collar; postclypeus in lateral profile rounded between 'top' and 'sides', midline clearly depressed. Thorax: pronotal collar width at dorsal midline moderately broad, but less than diameter of eyes; lateral margins weakly ampliate, no mid lateral tooth but edged with many microscopic spine-like bristles; cruciform elevation with dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 186e) hyaline; with 8 apical cells; infuscation overlaying distal end of vein $\mathrm{CuP}+1 \mathrm{~A}$ and adjacent portion of $2 \mathrm{~A}+3 \mathrm{~A}$; subapical cells absent; ulnar cell 3 angled to radial cell; vein CuA only weakly bowed so that cubital cell no larger than medial cell; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa reducing to node; pterostigma present; veins M and CuA widely separated at basal cell making basal cell broad and tending to be rounded; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; veins CuP and 1 A fused in part; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion longest; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 186f) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end shorter than that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat, prostrate. Male hind leg meracanthus with spur slender, triangular. Male opercula (Fig. 186g) completely encapsulating meracanthus, covering tympanal cavity but not meeting. Male abdomen (Figs 186g, h) shorter than head plus thorax (that of female longer); abdominal tergites with their sides weakly convex in cross-section, not partly concave; tergites 2 and 3 larger than tergites 4-7; sternites III-VII gently convex in cross-section. Timbal covers (Fig. 186h) small, covering no more than half timbal cavity;
timbals (Fig. 186h) with large basal dome, the type species with four long ribs spaced with prominent intermediate short ribs.

FIGURE 185. Talcopsaltria olivei Moulds: setae on male operculum showing secretion of wax filaments. These wax secretions cover much of the body surface. Magnification 2160x.

Male genitalia (Figs 186a-d). Pygofer with distal shoulders extended into bluntly-pointed lobe; upper lobes absent; basal lobes undivided, broadly rounded; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant, barely divided apically; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view sharply angled through 90°; in dorsal view apical arms short, base broad and long with midline deeply furrowed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft gently curved, whip-like, very long and very thin; pseudoparameres absent; thecal apex entirely chitinized; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system unknown.
Distinguishing characters. Medium-sized cicadas. Body tending compressed vertically and extensively covered with a talc-like "dusting" of fine white pubescence mixed with a fine white, waxy exudation. Distinguished from all other genera by having a combination of the following two characters: distance between supra-antennal plate and eye much greater than length of supra-antennal plate; hind wing 1 st cubital cell at distal end shorter than that of 2 nd cubital cell (both tribal characters distinguishing the Talcopsaltriini of which Talcopsaltria is the only genus). Further, the edge of the paranotum may be unique in bearing many microscopic spine-like bristles. Males (Pl. 1, fig. 2) are easily distinguished by a combination of the following two characters: a short abdomen that is less than the length of head and thorax together, and small timbal covers that cover half or less of the timbal cavity and protrude forwards from the very top of the timbal cavity.

The male genitalia have a distinctive aedeagus that is whip-like, very long and very thin.
Discussion. The talc-like "dusting" on the body of Talcopsaltria, both above and below, results from a very fine, white, waxy exudation. This white waxy exudation is not uncommon in cicadas, occurring in many genera. It is, however, particularly extensive on fresh specimens of Talcopsaltria, covering virtually the entire head and body. It wears off with age and is easily removed from museum specimens by touching the body surface, relaxing specimens for setting, or wetting with alcohol or other solvents.

The waxy exudation is unusual in that it is excreted from pores situated on setae (Fig. 185) rather than from pores in the body cuticle itself. Similar exudation from setae (or spines) is known in some scale insects, family Monophlebidae (part of the old margarodids sensu lato), and family Ortheziidae (P. Gullan, pers. comm.), but not previously in the Cicadoidea.

FIGURE 186. Genus Talcopsaltria Moulds: (a) T. olivei Moulds, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, underside of male body showing opercula; (h) the same, male abdomen, lateral view; (i) generic distribution.

Moulds (2008b) provides notes on the phylogenetic relationships of Talcopsaltria together with notes on the song, distribution, habitat and behaviour of the only included species, T. olivei. Further notes on T. olivei (as Species B), including a song analysis, are provided by Ewart (1993) and updated in Ewart (2005b).

Genus TAMASA Distant

Tamasa Distant, 1905c: 386; Distant, 1906d: 73, 75; Ashton, 1912e: 105B; Ashton, 1914a: 349; Distant, 1914a: 2, 4; Ashton, 1921: 105, 106; Schulze, Kükenthal and Heider, 1926-40: 3381; Kato, 1932: 168, 169; Neave, 1940b: 393; Metcalf, 1944: 155; Tillyard, 1926: 162; Burns, 1957: 631; Kato, 1956: 67; Metcalf, 1963: 683; Duffels and van der Laan, 1985: 156, Moulds, 1990: 104; Moulds, 2005a: 387, 390, 412, 413, 425, 430, 434.

Type species: Cicada tristigma Germar, 1834, by original designation.
Included species: AUSTRALIAN: burgessi (Distant, 1905), comb. n.; doddi (Goding and Froggatt, 1904); rainbowi Ashton, 1912; tristigma (Germar, 1834). OTHERS: none.

Distribution (Fig. 187k): Eastern Queensland and New South Wales south from Heathlands Station in the far north of Cape York Peninsula to Ulladulla on the NSW South Coast; mainly coastal but also tending inland (Ewart 1993, 2005b; Moulds 1990) .

Diagnosis. Head (Fig. 187e) including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 187e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 187f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein Cu_{1} divided by crossvein m-cu more or less equally; veins CuP and 1A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 in some species, always at distal end of vein RA2, also at distal ends of longitudinal veins in T. rainbowi; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 187g) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 187h) more or less confluent with distal margin of tympanal cavity, well developed towards abdominal midline with sharply rounded apex facing midline, clearly separated. Male abdomen (Fig. 187h) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal covers present, flat, reduced dorsally and not reaching metathorax, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 187a-d). Pygofer with distal shoulders broad, rounded; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present as a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe basically tubular, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view V-shaped, the division reaching to theca; basal portion of basal plate directed upwards so as to be nearly parallel with thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system (Fig. 187i) accessory glands short.

Female reproductive system (Fig. 187j) ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Small to medium-sized cicadas. Distinguished from other Australian genera by having fore wing veins M and CuA meeting the basal cell independently and spaced apart, its pale straw-coloured

FIGURE 187. Genus Tamasa Distant: (a) T. tristigma (Germar), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and thorax, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) the same, underside of male body showing opercula; (i) the same, male reproductive system, dissection with aedeagus removed from pygofer; (j) T. doddi (Goding and Froggatt), female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (k) generic distribution.
body, and an infuscation always present at the fore wing apex at the distal end of vein RA2; in these characters it is similar to Parnkalla but differs in having an ampliate lateral margin to the pronotal collar. Further, the male opercula partly cover the timbal cavity but are effectively undetectable in Parnkalla.

The male genitalia have a characteristic trumpet-shaped apex to the aedeagus and, together with Parnkalla, a characteristic, nearly tubular, short uncus and a basal plate that has its basal portion directed upwards so as to be nearly parallel with the thecal shaft.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) based on the type species T. tristigma. The species of this genus have been reviewed by Moulds (1990). Further notes on T. tristigma, including song analyses and notes on calling behaviour are provided by Bennet-Clark \& Young (1994), Emery et al. (2005) and Ewart (1986, 1993, 1995, 2001a).

Review of selected species

Tamasa burgessi (Distant), comb. n.

Abricta burgessi was described by Distant from an undisclosed number of males taken at Ripple Creek, near Ingham in northern Queensland (Distant 1905e). Since that time no further specimens have been recorded and the identity of the species has remained unclear. Examination of the type (in BMNH) has revealed that burgessi does not belong to Abricta but to Tamasa. It is closely allied to T. doddi Goding \& Froggatt, differing only in the male genitalia, the aedeagus of which is distally trumpet-shaped and scalloped around the opening; that of doddi is not trumpet-like and the margin carries two long spines.

Genus TAURELLA gen. n.

Type species: Melampsalta forresti Distant, 1882.
Included species: AUSTRALIAN: forresti (Distant, 1882), comb. n., froggatti (Distant, 1907), comb. n., viridis (Ashton, 1912), comb. n. OTHERS: none.

Etymology. From the Latin taura; a freemartin, i.e. a sterile heifer twin born with a bull, and referring to the bull-like horns on the uncus when viewed laterally. Feminine.

Distribution (Fig 188h): Barrow Island off the north-west coast of Western Australia, northern Queensland south from Cape York and as far west as the Northern Territory border, and through much of eastern Queensland and north-eastern New South Wales south to Taree (Ewart 1998b, 2005b; Moulds 1990).

Diagnosis. Head including eyes wide, clearly wider than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 188e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa broadest a little before node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 188f) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 188g) tending to be sickle-shaped, small, very narrow, curving towards abdominal midline; inner margin not developed around meracanthus; far from distal margin of tympanal cavity; far from meeting; clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 188g) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; male tergites 2-7 all similar in size (2 and 3 not considerably larger); male sternites III-VI in cross-section convex.

Timbal covers absent; timbal ribs many (usually 7-8) and regular in size and closely spaced filling entire timbal area apart from basal dome; timbals not extended below wing bases.

Male genitalia (Figs 188a-d). Pygofer with distal shoulders not developed; upper lobes flat, finger-like in lateral view, very well developed, dominating pygofer between basal lobes and dorsal beak; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, closely aligned, lobe-like, in lateral view apically downturned with a subapical plate projecting forwards and 'hornlike', in dorsal view the subapical plate broad and toothed at its outer corner, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that is substantially compressed between theca and basal plate in lateral view; thecal shaft straight or curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak absent; ovipositor clearly protruding beyond abdominal segment 9. Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small cicadas. Distinguished by the broad head that is clearly wider than the mesonotum and the lengths of the three distal vein sections that make up the inner margin of the radial cell which are all of similar length. Males have very characteristic opercula that are slender and sickle-like in shape, clearly not developed around the meracanthus and not meeting. There are usually $7-8$ timbal ribs.

The male genitalia have claspers that are very distinct, downturned and beak-like in lateral view with a 'horizontal' subapical horn clearly visible when viewed from above. Further, the upper pygofer lobes are exceptionally long and slender.

Discussion. Notes on the distribution and biology of the species of this genus are provided by Moulds (1990). An analysis of the song of a Taurella species (sp. near viridis) is provided by Ewart (1998b). Notes on T. sulcata, including a song analysis, are provided by Ewart (2005b).

Review of selected species

Taurella forresti (Distant), comb. n.

Melampsalta forresti Distant, 1882: 129; pl. VII, figs 10, 10a-b
Melampsalta warburtoni Distant, 1882: 129; pl. VII, figs 9a-b. Syn. n.
Melampsalta capistrata Ashton 1912c: 31; pl. 4, figs c-c2. Syn. n.
Cicadetta warburtoni (Distant): Metcalf, 1963, 3: 394.
Cicadetta forresti (Distant): Weidner and Wagner, 1968: 149.
Cicadetta capistrata (Ashton): Metcalf, 1963: 299.
There are two male syntypes of M. forresti, one in each of ZMH and BMNH, both from Gayndah, Queensland. There is a female syntype of M. warburtoni in ZMH and a male syntype in BMNH. The male is missing its pygofer but coloration, body form and wing venation show that both are conspecific with the syntypes of M. forresti. The syntypes of M. warburtoni supposedly originate from Peak Downs, Queensland, but this inland locality is far from the coastal and subcoastal habitats of this species and the locality requires confirmation.

Ashton (1912a) described M. capistrata from two males and one female syntypes. Two of these are believed to be a male and female in MV, both similarly labelled from Kuranda, and labelled as types. Another male in the same collection is similarly labelled but lacks a type label. A further male in the AM is labelled as a type (as reported by Burns, 1957) and is similarly labelled Kuranda (registered No. K67576). Regardless of their type status, all four specimens are conspecific with the syntypes of M. forresti. Differences between capistrata and forresti listed in Moulds (1990) fall within the range of variation found within forresti.

FIGURE 188. Genus Taurella gen.n.: (a) T. forresti (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, underside of male body showing opercula; (h) generic distribution.

Melampsalta froggatti Distant, 1907: 419.
Melampsalta sulcata Distant, 1907: 421. Syn. n.
Cicadetta froggatti (Distant): Metcalf, 1963: 314.
Cicadetta sulcata (Distant): Metcalf, 1963: 383.
C. sulcata is the orange variant of the red or crimson Taurella froggatti. In the southern part of the species' range individuals are red, primarily on the underside, but gradually change to orange or amber with higher latitudes. The male genitalia show no differences and A. Ewart (pers. comm.) could find no differences in song structure.

Genus TELMAPSALTA gen. n.

Type species: Melampsalta hackeri Distant, 1915.
Included species: AUSTRALIAN: hackeri (Distant, 1915), comb. n. OTHERS: none.
Etymology. From the Greek telma meaning standing water, pool or marsh and referring to the often swampy habitat of the type species, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. Feminine.

Distribution (Fig. 189f): South-eastern Queensland south from Bundaberg and Fraser and North Stradbroke Islands, and through eastern NSW south to Port Stephens and northern Sydney; often near salt water and never more than 40 km inland (Moulds 1990, Emery and Emery 2002).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell usually shorter than the distance from its apex to wing tip (about three quarters the length or more, rarely about the same length); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 189e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen (Fig. 189e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 189a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant,

FIGURE 189. Genus Telmapsalta gen.n.: (a) T. hackeri (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, underside of male body showing opercula; (f) generic distribution.
restraining aedeagus; claw-like, in lateral view apically broadly rounded; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; clearly diverging towards distal ends but their apices nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, long (about three quarters or more length of pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Small cicadas. Fore wing veins M and CuA meet the basal cell with their stems completely fused as one, the fore wing radial cell is usually short and less than the distance from its apex to wing tip (rarely equal), the paranota are confluent with adjoining sclerites and lack a mid lateral tooth, and the posterior margin of the male's timbal cavity is ridged on its basal half rather than completely rounded. These characteristics distinguish Telmapsalta from most other genera. Distinguished from all others by the male genitalia which have an aedeagus with a typically 'trifid' theca exposing a fleshy endotheca, a long ventral support that is about three quarters the length of the pseudoparameres, and the pseudoparameres are aligned with the thecal shaft for much of their length.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the single species included in this genus, T. hackeri, are provided by Ewart (1995) and Moulds (1990).

Genus TEREPSALTA gen. n.

Type species: Cicada infans Walker, 1850 (Pl. 2, figs 11a, 11b).
Included species: AUSTRALIAN: infans (Walker, 1850), comb. n. OTHERS: none.
Etymology. From the Latin teres meaning rounded or cylindrical, and from psalta, a traditional ending for cicada generic names which probably originates from the Latin psaltria meaning a female harpist. The former refers to the rounded, nearly cylindrical, abdomen of the male. Feminine.

Distribution (Fig. 190h): AUSTRALIA: The only confirmed localities are from central and south-western Queensland (Ewart, Emmott, Hill, Marshall and Moulds); otherwise only recorded from 'Adelaide', South Australia (type locality of T. infans) but it is unlikely the species occurs near Adelaide and was probably collected some distance north in much dryer habitat. OTHERS: none.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 190f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node, costa of male gently and evenly curved; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA close together at basal cell but not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ about equal to or longer than between $r-m$ and m; apical cells 3-6 about equal to or longer than ulnar cells; radial cell clearly shorter than the distance from its apex to wing tip (about three quarters the length or more); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 190g) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe moderately broad with vein 3A

FIGURE 190. Genus Terepsalta gen.n.: (a) T. infans (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) the same, underside of male body showing opercula; (h) generic distribution.
curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 190e) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 190e) as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, lateroventrally rounded to ventral surface; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites III-VII in cross-section convex, not unusually swollen. Timbals with three long ribs all similar in length and spanning the full height of the timbal (and one or two others not so long); basal dome large; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity ridged on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 190a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, small to moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, restraining aedeagus; essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; diverging towards distal ends; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft nearly straight; pseudoparameres present, dorsal of theca and originating distal of thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length, proximal half or so diverging from ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, of medium length, no more than about half the length of pseudoparameres; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system unknown.

Distinguishing characters. Very small cicadas. Differs from all other Australian genera in having fore wing veins M and CuA reaching the basal cell separately, the hind wing anal lobe nearly parallel-sided for more than three quarters its length, and vein 3A two thirds the length of 2A. Distinguished from all genera by having the following combination of characters: head is as wide as the mesonotum, the paranota are confluent with adjoining pronotal sclerites and lack a mid lateral tooth, timbal covers are lacking, fore wing veins M and CuA reach the basal cell separately, and fore wing cross veins r and $r-m$ are about the same distance apart (or a little more) than the distance between $\mathrm{r}-\mathrm{m}$ and m .

The male (Pl. 2, fig. 11a) has a distinctive, parallel-sided abdomen with almost no taper on segments 2-6 and all tergites are rounded to the ventral surface rather than reflexed. The female (Pl. 2, fig. 11b) has a long, protruding ovipositor sheath.

The male genitalia have an aedeagus with a typical 'trifid' theca exposing a fleshy endotheca, and claspers that are essentially flat and narrow in lateral view with an overhanging lip along the outer margin and distally diverging in ventral view.

Discussion. T. infans does not belong to the African genus Quintilia as previously believed. It differs notably in the structure of the male genitalia, especially in the aedeagus, and fore wing vein $\mathrm{R}+\mathrm{Sc}$ is not swollen.

Review of species

Terepsalta infans (Walker), comb. n.
(Pl. 2, figs 11a, 11b)
Cicada infans Walker, 1850: 201 (nec Walker 1862: 304)

Distant (1906d) synonymised C. infans (described from a female in BMNH) and Cicada abbreviata Walker (described from a male in BMNH). I have examined these types, and an additional male in the MM, and I find no reason to question Distant's synonymy. As far as I can determine there are no other known specimens.

The only localities for the species not in question are all from South Australia. The types are labelled 'Adelaide' (although it is likely they did not originate from Adelaide itself). The reference by Walker (1862: 304) to C. infans occurring in New Zealand cannot refer to this species as Walker is commenting on the close affinity between 'infans' and his "grass-green" Kanakia congrua [now a synonym of Chlorocysta vitripennis (Westwood)] (Moulds 1990). C. infans is almost entirely black above, and black with brown (perhaps originally muddy yellow) below. Further, the "little yellowish green" species from "Southern Victoria and S. Australia" referred to by Froggatt (1907: 352) as infans must be regarded as a misidentification because infans is far from yellowish green.

Genus TETTIGARCTA White

Tettigarcta White, 1845: 433; White, 1846: 332; Walker, 1850: 247; Walker, 1858a: 1; Dohrn, 1859: 76; Goding and Froggatt, 1904: 566, 595, 664; Distant, 1905g: 280; Distant, 1906d: 186; Froggatt, 1907: 354; Ashton, 1912b: 28; Horváth, 1913: 428; Ashton, 1914a: 357; Hardy, 1918: 71; Handlirsch, 1925: 1116; Schulze, Kükenthal and Heider, 1926-40: 3434; Myers, 1928a: 59; Myers, 1928b: 406, 413, 424, 460, 464; Myers, 1929a: 35; Myers, 1929b: 46, 50, 51, 54, 61, 78, 84, 85, 89, 90, 92, 93, 114, 116, 134, 201, 207; Muir, 1930: 549, 550; Kato, 1932: 11, 13, 25, 26, 30, 32, 33, 34, 140, 191; Imhof, 1933: 307; Piton and Theobald, 1937: 86; Imhof, 1940: 397; Neave, 1940b: 445; Evans, 1941: 35, 47; Metcalf, 1944: 156; Zeuner, 1944: 111-116; Evans, 1946: 42, 46; Evans, 1948: 508; Bekker-Migdisova, 1949: 21, 22 56, 62; Ossiannonesson, 1949: 118; Kramer, 1950: 68; Pesson, 1951: 1497, 1498; Heslop-Harrison, 1952: 690; Evans, 1956a: 222; Evans, 1956b: 130; Kato, 1956: 70; Burns, 1957: 671; Evans, 1957: 283, 286, 291; Heslop-Harrison, 1957: 48, 52; Pringle, 1957: 144, 147-150, 154, 155, 156, 157; Schremmer, 1957: 46; Burns, 1958: 147; Evans, 1958a: 135, 143; Evans, 1958b: 46; Evans, 1959: 152-153; Heslop-Harrison, 1960: 633, 634; Evans, 1963: 80, 81, 86; Leston and Pringle, 1963: 396, 400; Metcalf, 1963: 467; China, 1964: 159, 160; Evans, 1964: 172, 173; Boulard, 1965: 800, 810; Lloyd and Dybas, 1966: 483, 485; Matsuda, 1970: 248, 257, 260; Woodward, Evans and Eastop, 1970: 412; Wootton, 1971: 318; Fleming 1975b: 299; Young, 1975: 113; Matsuda, 1976: 296-298; Whalley, 1983: 140; Duffels and van der Laan, 1985: 3; Dworakowska, 1988: 73, 74, 76, 80, 88, 92, 96; Evans, 1988: 61; Evans, 1989: 102; Ewart, 1989b: 75; Boulard and Nel, 1990: 38, 40, 41, 43; Moulds, 1990: 45; Duffels and de Boer, 1990: 1226; Moulds and Carver, 1991: 465, 466; Duffels, 1993: 1226; Nel, 1996: 85, 88, 90, 91; Grimaldi and Engel, 2005: 308, 630: Moulds, 2005a: 388, 389, 394, 410, 412, 413, 415, 426, 430; Shcherbakov, 2009: 343, 344,345, 346, 347, .
Tettigarota [sic]; Marschall, 1873: 383; Schulze, Kükenthal and Heider, 1926-40: 3434 (misspelling).
Tettigareta [sic]; Kirby, 1896: 458 (misspelling).
Tettigarta [sic]; Gomez-Menor, 1957: 16 (misspelling).
Type species: Tettigarcta tomentosa White, 1845, by monotypy.
Included species: AUSTRALIAN: crinita Distant, 1883; tomentosa, White 1845. OTHERS: none.
Distribution (Fig. 191j): Mountain areas of New South Wales south from the Blue Mountains, the Brindabella Range in the Australian Capital Territory, the mountains of Victoria west to the Otway Range and throughout much of Tasmania.

Diagnosis. Head (Fig. 191e) including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 191e): pronotum exceedingly large and concealing much of mesonotum; pronotal collar largely ill-defined, paranota weakly ampliate, no mid lateral tooth; scutellum not developed into a cruciform elevation; opercula absent. Fore wings (Fig. 191f) hyaline with extensive maculation; 8 apical cells; subapical cells absent; basal cell long and narrow; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; vein CuA weakly_bowed so that cubital cell no wider than medial cell; veins M and CuA clearly separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1A unfused; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 191g) with numerous microscopic setae on
dorsalsurface; 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end about equal to 2nd cubital cell; anal lobe broad with vein 3A straight, long, separated from wing margin. Fore leg femoral primary spine lying flat. Male opercula absent, as are tympanal organs. Male abdomen (Fig. 191e) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbals small, weakly ribbed; in lateral view timbals extended below wing bases; timbal covers absent.

Male genitalia (Figs 191a-d). Pygofer with distal shoulders not developed; upper lobes absent; basal lobes absent; dorsal beak absent. Uncus undivided and dominated by median lobe; median lobe n-shaped, apically with sides meeting but not fused; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view basally very narrow becoming broad apically; in dorsal view parallel-sided, basal two-thirds without sclerotisation except laterally; basal portion of basal plate directed away from thecal shaft; ventral rib absent; junction between theca and basal plate sinewy; thecal shaft curved in an arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica presumed absent._Male reproductive system (Fig. 191h) with accessory glands short.

Female reproductive system (Fig. 191i) monotrysian; accessory glands of common oviduct absent.
Distinguishing characters. Medium to large cicadas. The two species of Tettigarcta can be distinguished from all other Australian cicadas by any one of the following: their exceedingly narrow head (distance between the eyes less than one eye diameter); the very large pronotum which covers all of the mesonotum except the scutal area, and the brown or black maculation on the fore wings.

Features that strictly define Tettigarcta are considered to be the very narrow head; the long legs with the hind coxae overhanging the abdomen; the heavily maculated fore wings; a well developed nodal line and an aedeagus with a sclerotised dorsal crest near its apex.

Discussion. The two living species of Tettigarcta are the only extant representatives of the family Tettigarctidae, all other species and genera being known only from fossils. Features defining the Tettigarctidae can be found in Moulds (2005a).

Shcherbakov (2009) reviewed the family Tettigarctidae recognizing 17 genera, all but Tettigarcta being known only from the fossil record. Phylogenetic relationships of Tettigarcta based on extant taxa using molecular and morphological analyses are summarised by Cryan (2005) and Moulds (1990, 2005a). Tettigarcta is most closely allied to the Cenozoic fossil genus Meuniera Piton (Boulard and Nel 1990, Shcherbakov 2009). Because this fossil genus is known only from wing impressions, differences can be summarised only for wing structures. Tettigarcta differs in having a fore wing venation with cross veins matching those found in 'typical' extant cicada wings. The distribution and biology of the two extant species of Tettigarcta (both from Australia) have been summarised by Moulds (1990). Tettigarcta species do not communicate by air born songs but by substrate vibrations used by both sexes (Claridge, Morgan and Moulds 1999), and are the only cicadas within the Cicadoidea to do so. Further notes on T. tomentosa are provided by Moss (1989).

Review of selected species

Tettigarcta crinita Distant

Tettigarcta crinita Distant 1883: 188; pl. XXV, figs 5, 5a-c.
Tettigarcta ciliata Singh-Pruthi 1925: 243. Incorrect subsequent spelling.
Tettigarcta criniti Kato 1930: 147. Incorrect subsequent spelling.
Singh-Pruthi (1925) briefly mentioned Tettigarcta ciliata in a discussion of cicada male genitalia. There has never been a T. ciliata (or any other ciliata) within the Cicadoidea and obviously Singh-Pruthi did not intend to create a new name. The context in which Singh-Pruthi uses Tettigarcta ciliata clearly indicates that he intended Tettigarcta crinita, and ciliata should therefore be regarded as a misspelling. Metcalf (1963) was amiss in crediting SinghPruthi with the establishment of a new name.

FIGURE 191. Genus Tettigarcta White: (a) T. crinita Distant, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, male head and body, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) male reproductive system, dissection with aedeagus removed from pygofer; (i) the same, female reproductive system, dissection in dorsal view, ovipositor diagrammatic; (j) generic distribution of extant species.

Genus THAUMASTOPSALTRIA Kirkaldy

Acrilla Stål, 1863a: 575 (nec Acrilla Adams, 1860); Walker, 1870: 95; Marschall, 1873: 351; Distant, 1892, 103, 151; Breddin, 1901: 200, 201; Jacobi, 1903: 14; Kuhlgatz, 1905: 79; Schulze, Kükenthal and Heider, 1926-40: 37; Neave, 1939a: 41; Esaki and Miyamoto, 1975: 638.
Thaumastopsaltria Kirkaldy, 1900: 242 (replacement name for Acrilla Stål, 1863a); Kirkaldy, 1904: 283; Distant, 1905f: 213, 216; Distant, 1906d: 1-54, 159; Horváth, 1913: 427, 429; Ashton, 1914a: 351; Schulze, Kükenthal and Heider, 1926-40: 3445; Imhof, 1933: 306; Neave, 1940b: 455; Burns, 1957: 644; Metcalf, 1963: 258-259; Esaki and Miyamoto, 1975: 638; Duffels, 1977: 205, 207; Holloway, 1979: 235; Duffels and van der Laan, 1985: 249; Duffels, 1986: 328; de Boer, 1990: 64; Moulds, 1990: 191; de Boer, 1991: 2; de Boer, 1992a: 164; de Boer, 1992b: 17-44; de Boer, 1993a: 16, 17, 18, 19; de Boer, 1993b: 141, 142, 143, 144, 145; de Boer, 1994b: 90; de Boer, 1995a: 15, 16, 17; de Boer, 1995b: 204, 207, 211, 215, 217-218, 219; de Boer, 1995c: 2, 3, 5, 6, 7; de Boer, 1995d: 207-208, 217, 218, 219, 222, 224, 225, 226, 229, 231, 233, 234, 235; de Boer, 1996: 350, 351, 352, 353, 354, 355, 356, 358; de Boer and Duffels, 1996a: 156, 165, 166, 170, 171, 172, 173; de Boer and Duffels, 1996b: 301, 304, 313, 314, 316, 318; de Boer, 1997: 92, 93, 98, 114; Moulds, 2005a: 390, 412, 430, 435.
Thaumatopsaltria [sic]; Waterhouse, 1902: 372 (misspelling); Boulard 1979a: 46.
Thoumastopsaltria [sic]; Kato, 1932: 184, 185 (misspelling); Kato, 1956: 70.
Type species: Acrilla adipata Stål, 1863, by original designation.
Included species: AUSTRALIAN: globosa (Distant, 1897). OTHERS: adipata (Stål, 1863); lanceola de Boer, 1992; pneumatica de Boer, 1992; sarissa de Boer, 1992; sicula de Boer, 1992; spelunca de Boer, 1992.

Distribution (Fig. 192g): Waigeo, Misoöl Island, mainland New Guinea, D'Entrecasteaux Islands, New Britain, Umboi Island, northern Australia and doubtfully from Buka Island and Bougainville (de Boer 1992b). The single Australian species is known from along the eastern margin of Cape York Peninsula from Banks Island in Torres Strait to Daintree, and from Groote Eylandt, Northern Territory (Moulds 1990, as T. glauca, = T. globosa).

Diagnosis. Head including eyes narrow, considerably less than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides' and with a midline that is obtusely bent around midlength and thereafter straight to anteclypeus, and the lateral margins carry several rows of short parallel ridges. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 192e) hyaline; with $8-15$ apical cells (variable between species and even within species); subapical cells mostly absent; ulnar cell 3 substantially parallel to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa par-allel-sided to node; pterostigma absent; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting at basal cell but veins not aligned together; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu more or less equally; veins CuP and 1A fused in part; infuscation absent; wing outer margin greatly reduced and mostly contiguous with ambient vein. Hind wings (Fig. 192f) with 6-10 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine lying flat. Male opercula distant from lateral margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically tapering to a blunt point, inner margin straight, clearly not meeting. Male abdomen inflated; tergites in cross-section with sides concave, lateroventrally rounded to ventral surface; tergites $2-7$ all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs many, and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases; timbal covers absent.

Male genitalia (Figs 192a-d). Pygofer with distal shoulders not developed; upper lobes thickened, small, budlike, accentuated by adjacent 'dimple' in pygofer, bearing an angular lateral protrusion; basal lobes undivided, illdefined, substantially confluent with pygofer margin; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned, restraining aedeagus, most species (including T. globosa from Australia) with flat, sharply pointed, blade-like claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, nearly diamond-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft ' S ' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

FIGURE 192. Genus Thaumastopsaltria Kirkaldy: (a) T. globosa (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution in Australia.

Female abdominal segment 9 long and slender; ovipositor sheath protruding well beyond anal styles (a distance about equal to the length of the dorsal spine). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to medium-sized cicadas. The single Australian species is clearly distinguished from all other Australian genera by the fore wings having 12 apical cells (11 or 13 if aberrant) and no subapical cells. In addition the fore wing and hind wing apical cells are very long and narrow and the fore wing ambient vein is at the margin.

De Boer (1992b) redefined the generic concept of Thaumastopsaltria on the basis of the shape of the postclypeus and long ovipositor. The postclypeus in lateral view is obtusely bent at about mid point and thereafter straight to anteclypeus, plus the lateral margins show several rows of short parallel ridges. The ovipositor is long, clearly projecting beyond abdominal segment 9 far more than in allied genera. Fore wing venation was considered unreliable for defining the genus because the venation is so variable within and between species and also because species in other genera of Chlorocystini have corresponding cell numbers.

The male pygofer upper lobes in most species are distinctly inflated towards the ventral margin, a feature believed to be unique for Thaumastopsaltria (de Boer 1992b).

Discussion. De Boer (1992b) discussed the biogeography of Thaumastopsaltria and provided an account of all species. He also concluded that Thaumastopsaltria, together with Cystopsaltria, Cystosoma and Mirabilopsaltria (the latter not found in Australia) form a clade that is the sister group to all other Chlorocystini. These relationships have been discussed by Moulds (2005a). Moulds (1990) has provided notes on the distribution and biology of the single Australian species.

Genus THOPHA Amyot and Serville

Thopha Amyot and Serville, 1843: 471; Westwood, 1843: 33; Agassiz, Erichson and Germar, 1846: 14; Agassiz, 1848: 1065; Blanchard, 1848b: 560; Spinola, 1850: 50; Walker, 1850: 42, 258; Walker, 1858a: 1; Walker, 1858b: 5; Desmarest, 1859: 203; Dohrn, 1859: 72; Stål, 1866a: 6; Dallas, 1867: 557; Stål, 1870a: 6; Distant, 1882: 125; Kirby, 1896; 458; Kirby, 1897: 598; Kirkaldy, 1903b: 232; Distant, 1904a: 301, 302; Goding and Froggatt, 1904: 564, 567, 571; Imhof, 1905: 223; Distant, 1906d: 26; Froggatt, 1907: 348; Distant, 1912a: 20; Ashton, 1914a: 346; Ashton, 1921: 89; Delétang, 1923: 611; Lea, 1926: 40; Tillyard, 1926: 162; Schulze, Kükenthal and Heider, 1926-40: 3466; Myers, 1929b: 135; Kato, 1932: 10, 152, 232; Kato, 1933: 351; Neave, 1940b: 475; Cooper, 1941: 295; Metcalf, 1947: 163; Kato, 1956: 46, 67, 78; Burns, 1957: 611; Burns, 1962a: 259, 260; Burns, 1962b: 269-279, Metcalf, 1963: 135; Duffels and van der Laan, 1985: 48; Moulds, 1990: 53; Moulds, 2001: 195-203; Moulds, 2005a: 387-389, 393, 412, 413, 430, 434; Moulds, 2008a: 129, 135, 137, 139, 140.
Topha [sic]; von Linden, 1901: 761; Handlirsch, 1925: 1117; Schremmer, 1957: 21. (Misspelling).
Type species: Tettigonia saccata Fabricius, 1803, by subsequent designation by Westwood, 1843: 33.
Included species: AUSTRALIAN: colorata Distant, 1907; emmotti Moulds, 2001; hutchinsoni Moulds, 2008; saccata (Fabricius, 1803); sessiliba Distant, 1892. OTHERS: none.

Distribution (Fig. 193i): Monsoonal northern Australia and adjoining semi-arid regions, Central Australia (but excluding South Australia), the Carnarvon and Murchison districts of Western Australia, and eastern Australia south to Moruya on the NSW South Coast (Coombs \& Toolson 1991; Ewart 2005b; Moulds 2001, 2008a).

Diagnosis. Head (Fig. 193e) including eyes wide, clearly wider than mesonotum; vertex laterally elongate with eyes widely separated from supra-antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 193e): pronotal collar width at dorsal midline broad, equal to about diameter of eyes or a little greater; paranota strongly ampliate, evenly rounded, sloping forwards in lateral view, no mid lateral tooth but with margin partly serrate (in most individuals); cruciform elevation with its dome wider than long; epimeral lobe reaching operculum. Fore wings (Fig. 193f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad, tending to be rounded; costal vein (C) no higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA widely separated at basal cell; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion longest; veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 193g) with 6 apical cells; no

FIGURE 193. Genus Thopha Amyot and Serville: (a) T. saccata (Fabricius), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and pronotum; (f) the same, fore wing; (g) the same, hind wing; (h) the same, underside of male body showing opercula; (i) generic distribution.
infuscation on ambient vein; width of 1st cubital cell at distal end about equal to 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 193h) completely covering tympanal cavity, completely encircling meracanthus, not overlapping. Male abdomen (Fig. 193h) in cross-section with sides of tergites straight or weakly convex, lateroventrally rounded to ventral surface; tergites 2 and 3 enlarged, accounting for approximately half abdominal length; sternites IV-VII in cross-section flat except for upward tilted margin. Timbal covers present, grossly swollen, sac-like and projecting distally a little beyond 1 st abdominal segment, anterior dorsal margin fully rounded and extending to metathorax and tightly closed, lower margin extending anteriorly from or very near auditory capsule; timbal ribs irregular in size with prominent intermediate short ribs; basal dome very large; in lateral view timbals extended below wing bases.

Male genitalia (Figs 193a-d). Pygofer with distal shoulders broad, rounded, the most distal part of pygofer; upper lobes absent; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus undivided and dominated by median lobe; median lobe finger-like, tending to be tubular, long, dominant; accessory spines (claspers) absent. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view broad, apically broadly bilobed; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Large to very large cicadas. Thopha can be distinguished from all other Australian genera by having the following combination of characters: a wide head with the distance between the eyes greater than between the lateral angles of the pronotum, a very broad pronotal collar that is not only broad across the dorsal surface but is also strongly ampliate laterally, fore wing veins M and CuA widely separated at the basal cell, and no wing infuscations. Further, the males of Thopha possess very large and very distinctive, bulbous, sac-like timbal covers, a feature shared within the Australian fauna only with Arunta; the colour of these timbal covers clearly differs between the two genera with those of Thopha being dark brown or orange while those of Arunta are white. Also, Thopha differs from Arunta in having the timbal covers extending backwards a little beyond the 1st abdominal segment while those of Arunta extend beyond the 2nd abdominal segment, and the head of Thopha is very wide so that the distance between the eyes is greater than between the lateral fissures of the pronotum while the head of Arunta is narrow so that the eyes are closer together than the width of the lateral fissures.

The male genitalia have the distal shoulders of the pygofer partially developed and in some species tending towards having pointed apices, the basal lobes are kinked inwards subapically, the uncus is medially divided often almost to its base and the two parts each carry a smaller subapical ventral tooth, and the distal portion of the theca is characteristically swollen with its diameter increased.

Discussion. The phylogenetic relationships of this genus have been discussed by Moulds (2001, 2005a, 2008a). Burns (1962b) and Moulds (1990, 2001, 2008a) have reviewed the genus. Notes on species and song analyses can be found in Ewart (1995, 2005b), Ewart and Popple (2001) and Young (1973). Notes on seasonal occurrence and plant association of T. saccata are provided by Emery et al. (2005) and Hawkeswood (2007).

Genus TOXALA gen. n.

Type species: Urabunana verna Distant, 1912.
Included species: AUSTRALIA: verna (Distant, 1912), comb. n. OTHERS: none.
Etymology. From the Greek toxon, meaning bowed and referring to the strongly bowed fore wing costal margin. Feminine.

Distribution (Fig. 194g): Known only from scattered populations in south-eastern Queensland south from Maryborough, and eastern New South Wales south to Sydney (Moulds 1990).

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotum in dorsal view parallel-sided or widening towards posterior; pronotal collar width at dor-
sal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 194e) hyaline, without infuscations; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa characteristically swollen proximal to node giving costal margin a strongly bowed appearance, costa of male strongly bowed on distal half; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m -cu so that proximal portion shortest; veins CuP and 1 A fused in part; distance between cross veins r and $r-m$ much less than distance between $r-m$ and m; apical cells $3-6$ about equal to or longer than ulnar cells; radial cell very long (about equal to or longer than distance from its apex to wing tip); infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 194f) with 3 or 4 apical cells (rarely 5 if aberrant but usually only in one wing); no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting. Male abdomen as wide as or a little wider than thorax; tergites in cross-section with sides straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergite 1 narrow along dorsal midline; tergite 2 about as wide as tergite 3 along dorsal midline; sternites IV-VII in cross-section convex, not unusually swollen. Timbals with 3 long ribs spanning the full height of the timbal (and 1 or 2 not so long, interspersed with short ribs; large basal dome; anterior part of timbal mostly occupied by ribs; posterior margin of timbal cavity rounded and completely lacking a ridge on lower half or so; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 194a-d). Pygofer in ventral view ovoid to sub ovoid in shape, distal portion of upper pygofer lobes not the widest point, not strongly tapered from upper pygofer lobes to base; pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, broadly rounded in lateral view, abutted against or partly tucked behind pygofer margin; dorsal beak present as a developed apical spine or pointed apex (visible in dorsal view) and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus; essentially flat, narrow in lateral view, outer face with an overhanging lip along margin; unfused; lacking a rounded, inward-facing swelling on proximal half or so of inner margin; distally parallel to each other; their apices not widely separated, certainly nowhere near the widest dimensions of the claspers. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view as long as or longer than broad, apically broadened with 'ears', basal portion of basal plate directed forwards away from thecal shaft, ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that possesses a chitinous back; thecal shaft straight; pseudoparameres present, dorsal of theca and originating distal of, but near, thecal base, unfused throughout their length, in dorsal view turning in then gradually diverging, in lateral view aligned with thecal shaft for much of its length with proximal half or so in line with ventral support; endotheca exposed, soft, entirely fleshy; endothecal ventral support present, very long, almost reaching apices of pseudoparameres, very long (about as long as pseudoparameres); thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesical opening apical on theca. Male reproductive system unknown.

Female dorsal beak with a developed apical spine or pointed apex (visible in dorsal view). Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small cicadas. Clearly distinguished from all other Australian genera except Clinata by the bowed fore wing costa which is characteristically swollen proximal of node. Fore wing veins M and CuA meet the basal cell with their stems completely fused as one and the hind wing has 3 or 4 apical cells (rarely 5 if aberrant). Unlike Clinata, fore wing ulnar cell 1 is clearly longer than ulnar cells 2 and 3.

The male genitalia possess a distinctive aedeagus with a 'trifid' theca exposing a fleshy endotheca, exceedingly long pseudoparameres and an exceedingly long ventral support that almost reaches the distal ends of the pseudoparameres; the only other genus within the Australian fauna possessing a similar aedeagus is Clinata.

Discussion. Phylogenetic relationships are shown in the cladistic analysis included in the introductory part of this paper. Notes on the distribution and habitat of T. verna are provided by Moulds (1990). Notes on seasonal occurrence and plant association of T. verna in western Sydney are provided by Emery and Emery (2002) and Emery et al. (2005).

FIGURE 194. Genus Toxala gen.n.: (a) T. verna (Distant), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution.

Review of selected species

Toxala verna comb. n.

Urabunana verna Distant, 1912c: 440.
Curvicicada verna Chou et al., 1997: 79.

Chou (1997) placed U. verna in the genus Curvicicada Chou and Lu but the aedeagus clearly differs and verna should not be placed there. The aedeagus of verna is 'trifid' with an exposed endotheca, while that of Curvicicada is tubular with no ventral support or exposed endotheca (at least going by Chou and Lu's figure 8-22). Further, the fore wing costal shape is different, the timbal structure is different, and the number of cells in the hind wing is different.

Genus tryella Moulds

Tryella Moulds, 2003: 271-272; Moulds, 2005a: 393, 400, 413, 425, 430, 437; Moulds, 2005b: 133-137; Duffels, 2011: 81.
Type species: Tryella ochra Moulds, 2003, by original designation.
Included species: AUSTRALIAN: adela Moulds, 2003; burnsi Moulds, 2003; castanea (Distant 1905); crassa Moulds, 2003; graminea Moulds, 2003; infuscata Moulds, 2003; kauma Moulds, 2003; lachlani Moulds, 2003; noctua (Distant 1913); occidens Moulds, 2003; ochra Moulds, 2003; rubra (Goding \& Froggatt, 1904); stalkeri (Distant, 1907); willsi (Distant, 1882). OTHERS: none.

Distribution (Fig. 195e): Mainly tropical and subtropical Australia, both coastal and inland, but also central Australia, temperate eastern Australia and south-western Papua New Guinea.

Diagnosis. Head including eyes about as wide as mesonotum; distance between supra-antennal plate and eye about equal to length of antennal plate; postclypeus broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell broad and elongate; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costal margin anterior of costa ampliate, reducing to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no larger than medial cell; veins M and CuA close together at basal cell but clearly not touching; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1 A fused in part; infuscation overlaying veins at bases of apical cells 2 and 3 in some species, also sometimes at distal end of vein RA_{2}; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings with 6 apical cells; infuscation at distal end of vein 2 A spread on wing margin; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less confluent with distal margin of tympanal cavity, inner margin not developed around meracanthus, meeting or almost meeting. Male abdomen in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section flat except for upward tilted margin. Timbal ribs many (9-10), and regular in size and closely spaced filling entire timbal area apart from basal dome; in lateral view timbals extended below wing bases; timbal covers absent.

Male genitalia (Figs 195a-d). Pygofer with distal shoulders not developed; upper lobes flat, well developed, dominating pygofer between basal lobes and dorsal beak, concave on inner face; basal lobes large, in lateral view projecting outwards, basically triangular but sometimes distally elongate, divided creating secondary basal lobe; dorsal beak large and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, widely separated, restraining aedeagus, in ventral view somewhat ladle-like with distal end of each upturned and cupped, in lateral view with a winged lateral process near base. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline, in dorsal view basally divided into two discs with apical arms lobe-like; basal portion of basal plate directed forwards away from thecal shaft; ventral rib rod-like with attachment only at ends; junction

FIGURE 195. Genus Tryella Moulds: (a) T. ochra Moulds, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) generic distribution. cc conjunctival claw, $f l$ flabellum, $l p$ lateral process of uncus, pal palearis.
between theca and basal plate rigid, without a 'hinge'; thecal shaft straight or curved in a gentle arc; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum present in some species, palearis present in some species; conjunctival claws present, directed laterally or ventrally; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female abdominal segment 9 long, nearly conical; ovipositor sheath terminating level with or just beyond apex of dorsal beak. Female reproductive system ditrysian; length of accessory glands unknown.

Distinguishing characters. Small to medium-sized cicadas. Distinguished from other Australian genera except Aleeta by lacking timbal covers and having the fore wing costal margin ampliate to the node, the maximum dilation clearly wider than the costal vein. Differs from Aleeta mainly in the male genitalia but also mostly in size, the fore wing never reaching 32 mm in length, usually under 26 mm ; that of Aleeta is rarely below 32 mm , usually over 40 mm .

Male genitalia are very distinctive; the claspers are upturned at their distal ends and somewhat ladle-like while basally the claspers possess a lateral process clearly visible in lateral view. Further, the conjunctival claws are very well developed. Tryella is the only Australian genus which includes species with a palearis.

Discussion. Phylogenetic relationships of this genus are shown in the cladistic analysis of Moulds (2005a) based on the type species T. ochra. The species of the genus have been reviewed in detail by Moulds $(1990,2003)$ but note that the structures referred to as uncal lobes in Moulds (2003) are in fact claspers (see Moulds 2005a for discussion of homologies). Analyses of the songs of some species are available in Moulds (2005b). Ewart (2005b, 2009a) provides notes on T. lachlani and T. graminea respectively, including analyses of their songs. Notes on T. willsi are provided by Ewart \& Popple (2001) and Popple \& Strange (2002).

Genus URABUNANA Distant

Urabunana Distant 1905g: 274, 269; Distant, 1906d: 163, 181; Distant, 1911: 137; Ashton, 1912b: 27; Ashton, 1914a: 356; Kato, 1932: 38, 111, 385, 386; Chen, 1933: 40; Imhof, 1933: 307; Wu, 1935: 27; Ouchi, 1938: 108; Neave, 1940b: 614; Chen, 1943: 37; Metcalf, 1947: 163; Kato, 1956: 25; Burns, 1957: 668; Metcalf, 1963: 416; Dugdale, 1972: 877, 880; Duffels and van der Laan, 1985: 298; Moulds, 1990: 173; Moulds, 2005a: 390, 430, 436.

Type species: Cicada sericeivitta Walker, 1862, by original designation.
Included species: AUSTRALIAN: sericeivitta (Walker, 1862). OTHERS: none.
Excluded species: The following are transferred to other genera as listed.
festiva Distant, 1907, to Mugadina gen. n., q.v.
leichardti (Distant, 1882), to Paradina gen. n., q.v.
longipennis Ashton, 1914, to Uradolichos gen. n., q.v.
marshalli Distant, 1911, to Mugadina gen. n., q.v.
segmentaria Distant, 1905, junior synonym of Mugadina leichardti, q.v.
verna Distant, 1912, to Toxala gen. n., q.v.
wollomombii Coombs, 1995, to Myopsalta gen. n., q.v.
Distribution (Fig. 196i): South-eastern Queensland and eastern New South Wales between Bundaberg and Sydney.

Diagnosis. Head including eyes wide, clearly wider than mesonotum; supra-antennal plate nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 196f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting at basal cell and stems completely fused as one for part of their length; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein $\mathrm{m}-\mathrm{cu}$ so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 196g) with 5 apical cells (sometimes 4 or 6 if aberrant, but usually only in one wing); no infuscation on ambient vein; width of 1st cubital cell at distal end at

FIGURE 196. Genus Urabunana Distant: (a) U. sericeivitta (Walker), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, male head and body, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) underside of male body showing opercula; (i) generic distribution.
least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 196h) not quite reaching distal margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, almost meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Figs 196e, h) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VII in cross-section convex. Timbal covers absent; timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases.

Male genitalia (Figs 196a-d). Pygofer with distal shoulders not developed; upper lobes flat, moderately developed, set well away from dorsal beak, rounded; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate with a functional 'hinge' that is small and substantially compressed between the theca and basal plate in lateral view; thecal shaft curved in a gentle arc; pseudoparameres present, lateral of theca, dorsally fused almost to their apices; endotheca exposed, rigid, weakly sclerotised; endothecal ventral support absent; thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Very small cicadas. Distinguished from other genera by having the following combination of characters: head including eyes wide, clearly wider than mesonotum; fore wing veins M and CuA meet at basal cell with their stems completely fused as one; hind wings usually with 5 apical cells; dorsal beak of male pygofer and of female abdominal segment 9 small, finger-like, parallel-sided and not flanged at base.

The male genitalia have a very distinctive aedeagus with pseudoparameres that are very broad in lateral view and fused almost to the apex of the endotheca, and there is no ventral support for the endotheca.

Discussion. Phylogenetic relationships of this monotypic genus are shown in the cladistic analysis of Moulds (2005a). The single included species has been reviewed by Moulds (1990).

Genus URADOLICHOS gen. n.

Type species: Urabunana longipennis Ashton, 1914 (Pl. 2, figs 12a, 12b).
Included species: AUSTRALIAN: longipennis (Ashton, 1914), comb. n. OTHERS: none.
Etymology. Derived from the Greek dolichos, meaning long and referring to the elongate body, especially of males. Feminine.

Distribution (Fig. 197i): Known only from the Tennant Creek area, Northern Territory.
Diagnosis. Head (Fig. 197e) including eyes narrower than mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus in dorsal view protruding and not confluent with front of head, broadly rounded transversely across ventral midline, in lateral profile rounded between 'top' and 'sides'. Thorax (Fig. 197e): pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 197f) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one, rarely independently; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest (sometimes near equal, rarely distal portion shortest); veins CuP and 1 A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 197g) with 5 apical cells (sometimes 4 or 6 if aberrant, but usually only in one wing), the first cell usually very much smaller than the remainder; infuscation at distal end of vein 2 A absent; width of 1 st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M

FIGURE 197. Genus Uradolichos gen.n.: (a) U. longipennis (Ashton), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, head and prothorax, dorsal view; (f) the same, fore wing; (g) the same, hind wing; (h) the same, underside of male body showing opercula; (i) generic distribution.
fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 197h) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 197h) in crosssection with sides of tergites convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs more or less regular in width, usually 4 in number, short ribs indistinct; very large basal dome; timbals extending below wing bases; timbal covers absent.

Male genitalia (Figs 197a-d). Pygofer unusually narrow in lateral view; distal shoulders not developed; upper lobes very flat, very well developed, dominating pygofer between basal lobes and dorsal beak, elongate and usually expanded apically like a pair of horse blinkers; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view tending to be apically broadened with 'ears'; basal portion of basal plate directed forwards away from thecal shaft; ventral rib ridge-like, completely fused with basal plate; junction between theca and basal plate with a functional 'hinge'; thecal shaft curved in a gentle arc; pseudoparameres present, dorsal of theca and originating near thecal base; endotheca exposed, ridged, entirely chitinized; endothecal ventral support absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Small cicadas. The pronotum is narrower than the mesonotum, and the postclypeus is large and protruding so that in dorsal view it is not confluent with the front margin of the head and there are typically 5 hind wing apical cells (4 or 6 in aberrant specimens). Males (Pl. 2, fig. 12a) have an abdomen that is nearly cylindrical, almost parallel-sided and about the same width as the mesonotum. Females (Pl. 2, fig. 12b) are similar to males but with a considerably longer abdomen.

The male genitalia have an unusually shaped pygofer that is very narrow in lateral view and wide in ventral view, the upper pygofer lobes are large, the claspers are parrot-beak like and the exposed endotheca is strongly sclerotized.

Genus VENUSTRIA Goding and Froggatt

Venustria Goding and Froggatt, 1904: 596, 565; Distant, 1906d: 128, 129; Horváth, 1913: 429; Ashton, 1914a: 349; Delétang, 1923: 628; Kato, 1932: 179; Neave, 1940b: 634; Kato, 1956: 69; Burns, 1957: 634; Metcalf, 1963: 203; Duffels and van der Laan, 1985: 233; Moulds, 1990: 32, 180; de Boer, 1990: 64; de Boer, 1991: 2, 3; de Boer, 1992a: 164; de Boer, 1992b: 19; de Boer, 1993a: 16, 17; de Boer, 1993b: 142; de Boer, 1994a: 3; de Boer, 1994c: 130; de Boer, 1995a: 1, 3, 4, 8, 11; de Boer, 1995b: 204, 211, 214, 215, 218; de Boer, 1995c: 2, 5; de Boer, 1995d: 218, 222, 224, 225, 233; de Boer, 1996: 352; de Boer and Duffels, 1996a: 156, 168, 170, 171, 172, 173; de Boer and Duffels, 1996b: 301, 304; de Boer, 1997: 91, 92, 93, 94, 109: Moulds, 2005a: 390, 407, 412, 422, 430, 435.
Venustra [sic]; Kato, 1932: 181 (misspelling).
Type species: Venustria superba Goding and Froggatt, 1904, by original designation.
Included species: AUSTRALIAN: superba Goding and Froggatt, 1904. OTHERS: none.
Distribution (Fig. 198g): North-eastern Queensland from near Cooktown to the Kirrama Range northwest of Cardwell.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus transversely angulate along ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 198e) hyaline but weakly tinted light brown; with 9 apical cells (sometimes 8 if aberrant but usually only in one wing), mostly larger than ulnar cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma absent; vein CuA only weakly bowed so that cubital cell no broader than medial cell; veins M and CuA

FIGURE 198. Genus Venustria Goding and Froggatt: (a) V. superba Goding and Froggatt, male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at top; (e) the same, fore wing; (f) the same, hind wing; (g) generic distribution.
close together or sometimes touching at basal cell; vein RA_{1} diverging from Sc in subapical region; vein CuA_{1} divided by crossvein m-cu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 198f) with 6 apical cells; no infuscation on ambient vein; width of 1st cubital cell at distal end at least twice that of 2nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, basal portion (remnant of epimeron 3) raised and bubble-like. Male abdomen in cross-section with sides of tergites straight or weakly convex, lateroventrally rounded to ventral surface; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites III-VII in cross-section convex. Timbal ribs many, regular in size and closely spaced filling entire timbal area apart from basal dome; basal dome small; in lateral view timbals extended below wing bases; timbal covers absent.

Male genitalia (Figs 198a-d). Pygofer with distal shoulders not developed; upper lobes absent; basal lobes undivided, ill-defined, substantially transverse and ridge-like; dorsal beak present and a part of chitinized pygofer. Uncus absent. Claspers large, dominant, closely aligned restraining aedeagus. Aedeagus with basal plate in lateral view undulated, weakly depressed on dorsal midline; in dorsal view short, near oval; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge'; thecal shaft 'S' shaped; pseudoparameres absent; thecal apex entirely chitinized, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening apical on theca. Male reproductive system unknown.

Female reproductive system ditrysian; length of accessory glands unknown.
Distinguishing characters. Medium-sized cicadas. The nine long apical cells of the fore wing (mostly much longer than the ulnar cells) and the distinct but subtle brown suffusion of the distal half of the fore wings immediately separates this genus from all other Australian Chlorocystini. Likewise, Venustria is unique in having a very long vein 3 A in the hind wing, nearly three quarters the length of 2 A .

The male pygofer possesses a very large dorsal beak and characteristic basal lobes that are substantially transverse and ridge-like.

Discussion. Phylogenetic relationships of this monotypic genus are documented by de Boer (1995a, 1995b) and Moulds (2005a). De Boer (1995a, 1995b) considered the possibility of absorbing Venustria into Gymnotympana. While the phylogenetic position of Venustria is ambiguous, the swollen shape of the basal part of the male operculum (remnant of epimeron 3) does suggest a monophyletic relationship with the two Australian species of Gymnotympana, and the thorn-like ventral protrusion of the female abdominal segment 9 is possibly homologous with a similar, but much smaller, protrusion in G. rufa. However, de Boer refrained from disbanding Venustria as no unambiguous synapomorphy could be found for Venustria plus Gymnotympana. The generic status of Venustria is, in fact, well supported by the distinguishing attributes listed above and I strongly support de Boer in recognizing Venustria.

In de Boer's phylogenetic analysis of the Chlorocystini (de Boer 1995b), Venustria and Gymnotympana are sister clades. Further notes on the phylogenetic relationships of Venustria can be found in Moulds (2005a) where Venustria (as V. superba) is identified as the sister genus to the rest of the Australian Chlorocystini.

Moulds (1990) provides a detailed distribution and notes on the biology of the single known species in this genus.

Genus YOYETTA gen. n.

Type species: Cicadetta celis Moulds, 1988.

Included species: AUSTRALIA: aaede (Walker, 1850), comb. n.; abdominalis (Distant, 1892), comb. n.; celis (Moulds, 1988), comb. n.; denisoni (Distant, 1893), comb. n.; hunterorum (Moulds, 1988), comb. n.; incepta (Walker, 1850), comb. n.; landsboroughi (Distant, 1882), comb. n.; toowoombae (Distant, 1915), stat.rev., comb. n.; tristrigata (Goding and Froggatt, 1904), comb. n. OTHERS: none.

Distribution (Fig. 199h): Eastern Queensland south from the Atherton Tablelands, the coast and mountains of NSW, the eastern half of Victoria and along the Murray River to South Australia north to the Flinders Ranges and in Tasmania.

Etymology. Derived from the Latin aureum meaning yellow, and referring to the colour of the lateral abdomen of many species. Feminine.

Diagnosis. Head including eyes about as wide as mesonotum; supra-antennal plate meeting or nearly meeting eye; postclypeus broadly rounded transversely across ventral midline, in lateral profile angulate between 'top' and 'sides'. Thorax: pronotal collar width at dorsal midline much less than diameter of eyes; paranota confluent with adjoining pronotal sclerites, no mid lateral tooth except sometimes in the tristrigata complex; cruciform elevation with its dome wider than long; epimeral lobe not reaching operculum. Fore wings (Fig. 199e) hyaline; with 8 apical cells; subapical cells absent; ulnar cell 3 angled to radial cell; basal cell long and narrow; costal vein (C) clearly higher than $\mathrm{R}+\mathrm{Sc}$; costa parallel-sided to node; pterostigma present; vein CuA only weakly bowed so that cubital cell no wider than medial cell; veins M and CuA meeting basal cell with their stems completely fused as one; vein RA_{1} aligned closely with Sc for its length and not diverging in subapical region; vein CuA_{1} divided by crossvein mcu so that proximal portion shortest; veins CuP and 1A fused in part; infuscation absent; wing outer margin developed for its total length, never reduced to be contiguous with ambient vein. Hind wings (Fig. 199f) with 6 apical cells; no infuscation on ambient vein; width of 1 st cubital cell at distal end at least twice that of 2 nd cubital cell; anal lobe broad with vein 3A curved, long, separated from wing margin; veins RP and M fused basally. Fore leg femoral primary spine erect. Male opercula (Fig. 199g) more or less reaching margin of tympanal cavity, directed towards distomedial margin of tympanal cavity, apically broadly rounded, clearly not meeting, clearly raised above level of tympanal cavity on its outer half or so. Male abdomen (Fig. 199g) in cross-section with sides of tergites straight or weakly convex, epipleurites reflexed ventrally from junction with tergites; tergites 2-7 all similar in size (2 and 3 not considerably larger); sternites IV-VI in cross-section convex. Timbal ribs irregular in size and spaced with prominent intermediate short ribs; basal dome very large; timbals not extended below wing bases; timbal covers absent.

Male genitalia (Figs 199a-d). Pygofer with distal shoulders not developed; upper lobes flat, well developed, dominating pygofer between basal lobes and dorsal beak; basal lobes undivided, moderately developed, tending to be broadly rounded in lateral view; dorsal beak present and a part of chitinized pygofer, well developed. Uncus small, short, flattened, more or less duck-bill shaped. Claspers well developed, large, dominant, lobe-like, restraining aedeagus. Aedeagus with basal plate in lateral view downturned at distal end; in dorsal view T-shaped; basal portion of basal plate directed forwards away from thecal shaft; ventral rib completely fused with basal plate; junction between theca and basal plate rigid, without a 'hinge', without an obvious junction between the two; thecal shaft curved in a gentle arc, the apical quarter or so U-turned through 180°; pseudoparameres present, entirely lateral of theca, filiform or nearly so; thecal apex partly or entirely fleshy, thecal subapical cerci absent; flabellum absent; conjunctival claws absent; vesica retractable, vesical opening dorsal on theca, linear. Male reproductive system unknown.

Female reproductive system ditrysian; accessory glands of common oviduct long, longer than common oviduct.

Distinguishing characters. Small cicadas. Distinguished from most Australian genera by the following combination of characters: head about as wide as mesonotum, fore wings with veins M and CuA meeting basal cell with their stems completely fused as one, hind wings with six apical cells, no infuscation at distal end of vein 2A and the 2 nd cubital cell considerably larger than the 1 st anal cell.

Males have a characteristic aedeagus that is long and thin, turned through 180° in a broad arc distally and which markedly protrudes from the pygofer (clearly visible in dead dried specimens). Further, the pseudoparameres are slender and long, reaching to about the start of the 180° turn of the theca. The claspers are robust; in ventral view tapering to a blunt point, basally adjacent, apically wide apart; in lateral view excavated below about midpoint.

Discussion. Phylogenetic relationships of the genus (represented by the type species celis) can be found in Moulds (2005a). Moulds (1990) summarises the distribution and biology for most species of this genus. Notes on seasonal occurrence and plant associations of three described species and four undescribed species in western Sydney are provided by Emery et al. (2005). Further notes on the species of this genus, including song analyses, are provided by Arensburger, et al. (2004a), Buckley, et al. (2002), Coombs (1993b, 1996), Dunn (1991, 1992), Ewart (1998a), Ewart \& Popple (2001), Moss (1989) and Popple \& Strange (2002).

FIGURE 199. Genus Yoyetta gen.n.: (a) Y. celis (Moulds), male genitalia, lateral view; (b) the same, male genitalia, ventral view; (c) the same, aedeagus, lateral view; (d) the same, basal plate, dorsal view, apex at bottom; (e) the same, fore wing; (f) the same, hind wing; (g) underside of male body showing opercula; (h) generic distribution.

Acknowledgments

I am grateful to Dr Hans Duffels, Dr Bruce Halliday, Prof. M. Hayashi, Dr D.K. McAlpine and the late Dr C.N. Smithers for discussion and guidance concerning morphological interpretation and nomenclature. Dr M. Coombs, Ms Sally Cowan, Prof. A. Ewart, Ms Kathy Hill, Dr M. Humphrey, Dr D. Marshall, Dr J. Moss, Mr J. Olive, Dr A.G. Orr, Dr L. Popple, Dr D.C.F. Rentz, Dr Norma Scott and Mr Gary Wilson provided valuable comments on the manuscript and/or trialed the key to genera; in particular very special thanks go to Norma Scott and Tony Ewart for the numerous hours they dedicated to testing the key, and to Kathy Hill and Tony Ewart for their extensive comments on the finished manuscript as official reviewers. For guidance on cladistic matters I thank Dr John Trueman. Without the help of all these people this work would not have met expectations.

I am especially grateful also to the following for drawing and inking figures: Sally Beech, Hannah Finlay, Kyra Kopestonsky, Ivan Nozaic and Judy Thompson; all patiently tolerated my often over-zealous critical eye. Charlotte Brogden and Geoff Avern (AM) gave generous assistance with photomicroscopy. Michel Boulard, David Emery, Tony Ewart, Peter Hudson, Lindsay Popple, David Rentz and Mick Webb provided images for the text figures and/ or colour plates.

I am indebted to the librarians and staff of the Australian Museum, Sydney; The Natural History Museum, London; CSIRO Black Mountain Laboratories, Canberra, the Royal Society of South Australia, Adelaide, and North Carolina State University, Raleigh, for access to, or for providing copies of, literature in their care. Further, I wish to thank John Cooley, Hans Duffels, Ted Edwards, Kathy Hill, Murray Fletcher, Masami Hayashi and Chris Simon for providing photocopies of literature.

This study would not have been possible without an extensive reference collection; for helping make such a collection possible I am indebted to Barbara and Timothy Moulds who accompanied me on numerous field trips over many years. A special thanks also to Kathy Hill and Dave Marshall who accompanied me on many other field trips across Australia. To others who have provided specimens I also extend my sincere gratitude, in particular to the late Ernest Adams, John Cooley, Sally Cowan, Greg Daniels, George Davis, Roger De Keyzer, Rod Eastwood, David Emery, Angus Emmott, Rob and Margaret Evans, Tony Ewart, Laurie Greenup, George Hangay, Mark Hanlon, Jack and Sue Hasenpusch, Brian Haywood, Paul Hutchinson, the late Sheila Hunter, Rob Lachlan, David Lane, John Moss, John Olive, Michael Powell, David Rentz, Susan Robertson, Danae, Josef and Warwick Schofield, Chris Simon, Stephen Smith, Alan Sundholm, Allen Walford-Huggins, Geoff Williams, Matt Williams and Terry Woodger; together they have collected numerous important specimens over many years. In addition David Emery, Barry Day, John Olive, John Moss and Chris Simon generously provided frozen specimens for dissection.

I thank the curators of the following collections for access to material in their care: ANIC (Mary Carver and Tom Weir); BMNH (Janet Margerison-Knight and Mick Webb); HOPE (Zoë Simmons); MHUB (Jürgen Deckert); MM (Margaret Humphrey); MNHN (Michel Boulard); MV (Catriona McPhee and Ken Walker); QM (Geoff Monteith and Christine Lambkin); SAM (Jan Forrest and Peter Hudson); UZMC (Niels Anderson); WAM (Terry Houston) and ZMH (Prof. H. Strümpel).

This project was substantially supported during postgraduate studies by the Department of Crop Sciences, Faculty of Agriculture, University of Sydney in particular by an Australian Postgraduate Research Award and a Norman Scott Noble Scholarship. For additional financial assistance I especially thank the Linnean Society of New South Wales for a Joyce Vickery Research Award, the National Science Foundation (grant numbers DEB 05-29679, DEB 07-20664 and DEB 09-55849) and the Australian Museum. Ok Tedi Mining Limited and Lihir Gold Limited provided valuable support in kind. Without such assistance this project would not have been possible.

For collecting permits I thank National Parks and Wildlife Service, NSW; Forestry Commission of NSW; National Parks, Northern Territory; Department of Forestry, Queensland, National Parks and Wildlife Service, Queensland, and Department of Conservation and Land Management, Western Australia.
The task of typing the manuscript was largely undertaken by Sally Cowan and Barbara Moulds; I thank both for their many hours of work.

References

Adams, H. (1860) Description of a new genus and species of mollusk. Proceeding of the Zoological Society of London, 28, 241-243.
Agassiz, J.L.R. (1848) Nomenclatoris zoologici index universalis, continens nomina systematica classium, ordinum, familiarum et generum animalium omnium, tam viventium quam fossilium, secundum ordinem alphabeticum unicum disposita, adjectis homonymiis plantarum. Pp. i-x, 1-1135. [A revision of Nomenclator zoologicus; see Agassiz, J.L.R., Erichson, W.F. and Germar, E.F., 1842, 1846.]

Agassiz, J.L.R., Erichson, W.F. and Germar, E.F. (1842) Nomina systematica generum Hemipterorum, tam viventium quam fossilium, secundum ordinen alphabeticum disposita, adjectis auctoribus, libris in quibus reperiuntur, anno editionis, etymologia, et familiis, ad quas pertinent. In: Agassiz, J.L.R. et al., Nomenclator zoologicus, contines nomina systematica generum animalium tam viventium quam fossilium, secundum ordinem alphabeticum disposita, adjectis auctoribus, libris, in quibus reperiuntur, anno editionis, etymologia et familiis, ad quas pertinent, in singulis classibus. Pp. i-v, 1-20.
Agassiz, J.L.R., Erichson, W.F. and Germar, E.F. (1846) Hemiptera. (Addenda et corrigenda). In: Agassiz, J.L.R. et al., Nomenclator zoologicus, contines nomina systematica generum animalium tam viventium quam fossilium, secundum ordinem alphabeticum disposita, adjectis auctoribus, libris, in quibus reperiuntur, anno editionis, etymologia et familiis, ad quas pertinent, in singulis classibus. Pp. 1-16.
Aidley, D.J. and White, D.C.S. (1969) Mechanical properties of glycerinated fibers from the timbal muscles of a Brazilian cicada. Journal of Physiology, London, 205, 179-192, pl. 1.
Amyot, C.J.B. (1847) Entomologie française. Rhynchotes. Méthode monomymique. Ordre deuxième, Homoptères. Homoptera. Latr. Annales de la Société entomologique de France, (2)5, 143-238.
Amyot, C.J.B. and Serville, J.G.A. (1843) Histoire Naturelle des Insects. Hémiptères. Text, pp. i-lxxvi, 1-675. Atlas, pls 1-12.
Arensburger P., Buckley, T.R., Simon, C., Moulds, M.S. and Holzinger, K.E. (2004a) Biogeography and phylogeny of the New Zealand cicada genera (Hemiptera: Cicadidae) based on nuclear and mitochondrial DNA data. Journal of Biogeography, 31, 557-569.
Arensburger P., Simon, C. and Holsinger, K.E. (2004b) Evolution and phylogeny of the New Zealand cicada genus Kikihia Dugdale (Homoptera: Auchenorrhyncha: Cicadidae) with special reference to the origin of the Kermadec and Norfolk Islands' species. Journal of Biogeography, 31, 1769-1783.
Ashton, J.H. (1912a) Some new Australian Cicadidae. Proceedings of the Royal Society of Victoria (n.s.)24, 221-229, pls XLIX-LI.
Ashton, J.H. (1912b) Catalogue of the Victorian Cicadidae in the National Museum, Melbourne. Memoirs of the National Museum of Victoria, 4, 23-29, pl. IV. [Separate paginated 1-7]
Ashton, J.H. (1912c) Descriptions of new Australian Cicadidae in the National Museum, Melbourne. Memoirs of the National Museum of Victoria, 4, 30-32, pl. 4.
Ashton, J.H. (1912d) Notes on Australian Cicadidae. Records of the Australian Museum, 9(1), 76-80, pl. VII.
Ashton, J.H. (1912e) Description of a new cicada. Records of the Australian Museum, 9(1), 105a-106b.
Ashton, J.H. (1914a) Catalogue of the Cicadidae in the South Australian Museum with descriptions of several new species. Transactions and Proceedings of the Royal Society of South Australia, 38, 345-358, pl. XVII.
Ashton, J.H. (1914b) Notes of Australian Cicadidae. Proceedings of the Royal Society of Victoria, (n.s.)27, 12-14, pl. II.
Ashton, J.H. (1915) Synonymic notes on a recent catalogue of Cicadidae in the South Australian Museum. Transactions and Proceedings of the Royal Society of South Australia, 39, 91.
Ashton, J.H. (1921) A revision of the Australian Cicadidae. Part 1. Proceedings of the Royal Society of Victoria, (n.s.)33, 87-107.
Atkinson, E.T. (1884) Notes on Indian Rhynchota, No. 1. Journal of the Asiatic Society of Bengal, 53, 210-233.
Atkinson, E.T. (1886) Notes on Indian Rhynchota, No. 6. Addenda and Index. Journal of the Asiatic Society of Bengal, 55, 143-223.
Bashford, R. (1997) Records of insects associated with Acacia dealbata Link. in Tasmania. Australian Entomologist, 24, 109-115.
Bekker-Migdisova, E.F. (1949) [Mesozoic Homoptera from Middle Asia]. Trudy Paleontologicheskago Instituta Akademiya Nauk SSSR, 22, 1-68, 1 plate.
Bennet-Clark, H.C. (1997) Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. Journal of Experimental Biology, 200, 1681-1694.
Bennet-Clark, H.C. (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. Journal of Experimental Biology, 202, 3347-3357.
Bennet-Clark, H.C. and Daws, A.G. (1999) Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. Journal of Experimental Biology, 202, 1803-1817.
Bennet-Clark, H.C. and Young, D. (1992) A model of the mechanism of sound production in cicadas. Journal of Experimental Biology, 173, 123-153.
Bennet-Clark, H.C. and Young, D. (1994) The scaling of song frequency in cicadas. Journal of Experimental Biology, 191; 291-294.

Bennet-Clark, H.C. and Young, D. (1998) Sound radiation by the bladder cicada Cystosoma saundersii. Journal of Experimental Biology, 201, 701-715.
Bergroth, E. (1911) On some recently described Hemiptera chiefly from India. Annales de la Société entomologique de Belgique, 55, 184-189.
Blanchard, E. (1846) Dictionnaire universel d'histoire naturelle etc. Edited by Charles d'Orbigny. 4, 1-752. [A multi-authored work of which Blanchard wrote the insects].
For date of publication see Sherborn, C.D. and Palmer, T.S., 1899, Annals and Magazine of Natural History, (7)3, 350-352. The entire work re-issued in 1861 with new title pages, Houssiaux \& Co., Paris. Revised edition, containing one additional volume, c. 1867.
Blanchard, E. (1848a) Dictionnaire universel d'histoire naturelle etc. 11, 1-816. [A multi-authored work of which Blanchard wrote the insects. For footnote see Blanchard, E., 1846.]
Blanchard, E. (1848b) Dictionnaire universel d'histoire naturelle etc. 12, 1-816. [A multi-authored work of which Blanchard wrote the insects. For footnote see Blanchard, E., 1846.]
Blöte, H. C. (1960) The genus Baeturia Stål as represented in New Guinea (Homoptera, Cicadidae). Zoologische Mededeelingen, Leiden, 37, 61-80.
Boer, A.J. de (1990) Aedeastria, a new cicada genus from New Guinea, its phylogeny and biogeography (Homoptera, Tibicinidae), preceded by a discussion on the taxonomy of New Guinean Tibicinidae. Beaufortia, 40, 63-72.
Boer, A.J. de (1991) Scottotympana, a new cicad genus from New Guinea, with the description of three new species, their taxonomy and biogeography (Homoptera, Tibicinidae). Beaufortia, 42, 1-11.
Boer, A.J. de (1992a) The taxonomy and biogeography of the viridis group of the genus Baeturia Stål, 1866 (Homoptera, Tibicinidae). Bijdragen tot de Dierkunde, 61, 163-183.
Boer, A.J. de (1992b) The taxonomy and biogeography of the genus Thaumastopsaltria Kirkaldy, 1900 (Homoptera, Tibicinidae). Beaufortia, 43, 17-44.
Boer, A.J. de (1993a) Guineapsaltria, a new genus of the Australian - New Guinean region (Homoptera, Tibicinidae), with notes on its taxonomy and biogeography. Bijdragen tot de Dierkunde, 63(1), 15-41.
Boer, A.J. de (1993b) Ten species added to the genus Aedeastria Boer, 1990, with the description of eight new species and notes on the taxonomy and biogeography (Homoptera, Tibicinidae). Beaufortia, 43, 140-167.
Boer, A.J. de (1994a) The taxonomy and biogeography of the loriae group of the genus Baeturia Stål, 1866 (Homoptera, Tibicinidae). Tijdschrift voor Entomologie, 137, 1-26.
Boer, A.J. de (1994b) The taxonomy and biogeography of the guttulinervis group of the genus Baeturia Stål, 1866 (Homoptera, Tibicinidae). Bijdragen tot de Dierkunde, 64, 87-100.
Boer, A.J. de (1994c) The taxonomy and biogeography of the exhausta group of the genus Baeturia Stål, 1866 (Homoptera, Tibicinidae). Beaufortia, 44, 127-158.
Boer, A.J. de (1995a) The taxonomy, phylogeny and biogeography of the cicada genus Gymnotympana Stål, 1861 (Homoptera: Tibicinidae). Invertebrate Taxonomy, 9, 1-81.
Boer, A.J. de (1995b) The phylogeny and taxonomic status of the Chlorocystini (Homoptera, Tibicinidae). Bijdragen tot de Dierkunde, 65, 201-231.
Boer, A.J. de (1995c) The taxonomy and biogeography of the cicada genus Papuapsaltria gen. n. (Homoptera, Tibicinidae). Tijdschrift voor Entomologie, 138, 1-44.
Boer, A.J. de (1995d) Islands and cicadas adrift in the west-Pacific. Biogeographic patterns related to plate tectonics. Tijdschrift voor Entomologie, 138, 169-244.
Boer, A.J. de (1996) Mirabilopsaltria, a new cicada genus from New Guinea, its taxonomy and biogeography (Homoptera Tibicinidae). Tropical Zoology, 9, 349-379.
Boer, A.J. de (1997) Phylogeny and biogeography of Australian genera of Chlorocystini (Insecta: Homoptera: Tibicinidae). Memoirs of the Museum of Victoria, 56, 91-123.
Boer, A.J. de and Duffels, J.P. (1996a) Historical biogeography of the cicadas of Wallacea, New Guinea and the West Pacific: a geotectonic explanation. Palaeogeography, Palaeoclimatology, Palaeoecology, 124, 153-177.
Boer, A.J. de and Duffels, J.P. (1996b) Biogeography of Indo-Pacific cicadas east of Wallace's Line. In: Keast, A. and Miller, S.E. (eds), The origin and evolution of Pacific Island biotas, New Guinea to Eastern Polynesia: patterns and process. SPB Academic Publishing, Amsterdam, pp. 297-330.
Boisduval, J.B.A.D. de (1835) Voyage de découvertes de l'Astrolabe exécuté par ordre du Roi, pendant les années 1826-1827-1828-1829, sous le commandement de M. J. Dumont D'Urville. Faune entomologique de l'Océan Pacifique, avec l'illustration des Insectes nouveaux recueillis pendant le voyage. Vol. 2, Coléoptères et autres Ordres. J. Tastu, Paris. Pp. i-vii, 1-716, Atlas in folio (published separately), pls 1-12. [Reprinted 1835 (but lacking the plates) as Faune de entomologique [sic] l'Océan, comprenant les Coléoptères, les Hémiptéres, les Néuroptéres, les Hymémoptéres et les Diptéres. Roret, Paris. Pp. 1-705.]
Boulard, M. (1965) L'appareil génital ectodermique des Cigales femelles. Annales de la Société entomologique de France, (n.s.)1, 797-812.

Boulard, M. (1973) Classification raisonnée des Platypteures africaines (Homoptera-Cicadidae). Bulletin du Muséum National d'Histoire Naturelle, Paris, (3)90(2), 1161-1188.

Boulard, M. (1974) Spoerryana llewelyni n.g. n.sp., une remarquable cigale d'Afrique Orientale (Hom. Cicadoidea). Annales de la Sociéte Entomologique de France, (n.s.)10, 729-744.
Boulard, M. (1975) Les Plautillidae, famille nouvelle d'Homoptères Cicadoidea. Annali del Museo Civico di Storia Naturale di Genova, 80, 313-318.
Boulard, M. (1979a) Révision de la faune cicadéenne des Iles Maurice et Rodriguez. Bulletin du Muséum National d'Histoire Naturelle, Paris, 84, 27-47.
Boulard, M. (1979b) Cigales nouvelles des Iles Salomon et des Iles Sous-le-vent. Notes biogeographiques (Hom. Cicadoidea). Revue Française d'Entomologie, (n.s.)1, 49-60.
Boulard, M. (1980) Cigales nouvelles ou mal connues d'Afrique du Nord (Homoptera Cicadoidea). Nouvelle Revue d'Entomologie, 10, 313-324.
Boulard, M. (1988) Taxonomie et nomenclature supérieures des Cicadoidea. Histoire problèmes et solutions. Ecole pratique des hautes Etudes, Travaux du Laboratoire Biologie et Evolution des Insectes Hémipteroidea, 1, 1-89. [An earlier version, issued in 1987, was for private circulation only and as such does not constitute formal publication.]
Boulard, M. (1989) Expedition France-Australe (5 juillet-5 août 1988). Participation entomologique. Compte-Rendu de Mission en Australie Occidentale. Ecole pratique des hautes Etudes, travaux du Laboratoire Biologie et Evolution des Insectes Hémipteroidea, 2, 55-82. Separate numbered 1-33. [Reproduced in part in English with minor amendments, 1990.]

Boulard, M. (1990) A new genus and species of cicada (Insecta, Homoptera, Tibicinidae) from Western Australia. In: P.F. Berry, S.D. Bradshaw and B.R. Wilson (eds), Research in Shark Bay. Report on the France-Australe Bicentenary Expedition Committee. Western Australian Museum, Perth, pp. 237-243. [An English translation of Boulard (1989).]
Boulard, M. (1991) Cigales colligées lors des "Voyages de découvertes" conduits par J. Dumont d'Urville. Description de Poecilopsaltria durvillei, n. sp. (Hom. Cicadoidea, Cicadidae). Bulletin de la Société entomologique de France, 96, 117-124.
Boulard, M. (1993) Quatre nouvelles espèces pour la faune cicadéennes de la Nouvelle-Calédonie (Homoptera, Cicadoidea, Tibicinidae). Ecole pratique des hautes Etudes, travaux du Laboratoire Biologie et Evolution des Insectes Hémipteroidea, 6, 109-126.
Boulard, M. (1996) Sur deux nouvelles Cigales malgaches représentant deux genres nouveaux pour Madagascar (Cicadomorpha, Cicadidae, Cicadinae). Ecole pratique des hautes Etudes, Biologie et Evolution des Insectes, 9, 95-104.
Boulard, M. (1997) Nouvelles cigales remarquables originaires de la Nouvelle-Calédonie (Homoptera, Cicadoidea, Tibicinidae). In: Najt, J. and Matile, L. (eds), Zoologia Neocaledonica, Volume 4. Mémoires de la Muséum National d'Histoire Naturelle, 171, 179-196.
Boulard, M. (1998) Nomenclature et taxonomie supérieures des Cicadoidea ou vraies cigales: histoire, problèmes et solutions (Rhynchota Homoptera Cicadomorpha). Ecole pratique des hautes Etudes, Biologie et Evolution des Insectes, 10, 79-129.
Boulard, M. and Nel, A. (1990) Sur deux cigales fossiles des terrains tertiaires de la France [Homoptera, Cicadoidea]. Revue Francaise d'Entomologie, (n.s.)12(1), 37-45.
Breddin, G. (1901) Die Hemipteren von Celebes. Ein Beitrag zur Faunistik der Insel. Abhandlungen der Naturforschenden Gesellschaft zu Halle, 24, 1-213, pl. I.
Buckley, T.R., Arensburger, P., Simon, C. and Chambers, G.K. (2002) Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology, 51, 4-18.
Buckley, T.R. and Simon, C. (2007) Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biological Journal of the Linnean Society, 91, 419-435.
Burmeister, H.C.C. (1835) Schnabelkerfe. Rhynchota. Handbuch der Entomologie, 2(1), 1-396.
Burns, A.N. (1957) Check list of Australian Cicadidae. Entomologischen Arbeiten aus dem Museum Georg Frey, 8(2), 609-678.
Burns, A.N. (1958) The genus Diemeniana Distant with description of a new species (Hemiptera - Homoptera, Cicadidae, Tibicininae). Proceedings of the Royal Society of Victoria, (n.s.)70, 145-161, pl. XXV.
Burns, A.N. (1959) Revision of the genus Cyclochila Amyot \& Serville (Hemiptera-Homoptera, Cicadidae, Cicadinae). Proceedings of the Royal Society of Victoria, (n.s.)71, 39-44, pl. V.
Burns, A.N. (1962a) Revision of the genus Arunta Distant Cicadidae, Cicadinae, division Thopharia Homoptera-Hemiptera. Memoirs of the National Museum of Victoria, 25, 259-268.
Burns, A.N. (1962b) Revision of the genus Thopha Amyot and Serville Cicadidae, division Thopharia Homoptera-Hemiptera. Memoirs of the National Museum of Victoria, 25, 269-279.
Burns, A.N. (1964) Revision of the genus Macrotristria Stal (Cicadidae-Homoptera-Hemiptera) with descriptions of new species. Memoirs of the National Museum of Victoria, 26, 77-123.
Burwell, C.J. (1991) New distribution records of three Queensland cicadas (Homoptera: Cicadidae). Australian Entomological Magazine, 18, 124.
Butler, A.G. (1874). Monographic list of the homopterous insects of the genus Platypleura. Cistula Entomologica, 1, 183-198.
Chen, Kan-fan (1933) A list of Chinese known Cicadidae. Entomology and Phytopathology, 1 (Suppl.), 1-48.
Chen, Kia-ziang (1943) New genera and species of Chinese cicadas with synonymical and nomenclatorial notes. Journal of the New York Entomological Society, 51, 19-52, pls I-II.

China, W.E. (1964) Tibicenidae Van Duzee, 1916 (Insecta, Cicadoidea): proposed suppression under the plenary powers in favour of Platypleuridae Schmidt, 1918. Z.N.(S.) 1626. Bulletin of Zoological Nomenclature, 21(2), 154-160.
Chou, I., Lei, Z., Li, L., Lu, X. and Yao, W. (1997) The Cicadidae of China (Homoptera: Cicadoidea). Tianze Eldoneio, Hong Kong, $380+5 \mathrm{pp} ., 16 \mathrm{pls}+4 \mathrm{pls}$ of Figs [In Chinese supplemented by English.]
Claus, C.F.W. (1876) Unterordnung: Cicadaria (Homoptera), Cicaden, Zirpen. Grundzüge der Zoologie. Third edition. Zum Gebrauche an Universitäten und Höheren Lehranstalten sowie zum selbststudium, pp. 664-666.
Claus, C.F.W. (1880) Unterordnung: Cicadaria (Homoptera), Cicaden, Zirpen. Grundzüge der Zoologie. Fourth edition. Zum wissenschaftlichen Gebrauche, 1, i-vii, 1-822.
Claus, C.F.W. (1884) Sous-ordre Cicadaria, Homoptera. Traité de zoologie. Second French edition translated and revised by G. Moquin-Tandon, 1, i-xvi, 1-970.
Claridge, M.F., Morgan, J.C. and Moulds, M.S. (1999) Substrate-transmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera Cicadoidea, Tettigarctidae). Journal of Natural History, 33, 1831-1834.
Coombs, M. (1993a) New distribution records for three cicadas (Hemiptera: Cicadidae) in south-western New South Wales. Australian Entomologist, 20, 133-134.
Coombs, M. (1993b) Seasonality and reproductive behaviour of Cicadetta tristrigata (Goding and Froggatt) (Hemiptera: Cicadidae) at Armidale, N.S.W. Australian Entomologist, 20, 143-144.
Coombs, M. (1995) A new species of Urabunana Distant and new locality records for U. marshalli Distant (Hemiptera: Cicadidae) from northern New South Wales. Journal of the Australian Entomological Society, 34, 13-15.
Coombs, M. (1996) Seasonality of cicadas (Hemiptera) on the Northern Tablelands of New South Wales. Australian Entomologist, 23, 55-60.
Coombs, M. and Toolson, E. (1991) New distribution records for the double drummer cicada, Thopha saccata (Fabricius) (Homoptera: Cicadidae). Australian Entomological Magazine, 18, 100.
Cooper, K.W. (1941) Davispia bearcreekensis Cooper, a new cicada from the Paleocene, with a brief review of the fossil Cicadidae. American Journal of Science, 239, 286-304; pl. 1.
Cryan, J.R. (2005) Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cercopoidea and Membracoidea): adding evidence to the controversy. Systematic Entomology 30, 563-574.
Daley, E. (2007) Wings. An introduction to Tasmania's winged insects. Riffles Pty Ltd, Buckland, Tasmania, xx, 236 pages.
Dallas, W.S. (1857) Homoptera. Elements of entomology: An outline of the natural history and classification of British insects. Pp. 1-424. [Cicadas pp. 408-414.]
Dallas, W.S. (1867) Insecta. Zoological Record, 3, 556, 557, 558-561, 565, 567, 569, 571-573.
Davis, W.T. (1920) North American cicadas belonging to the genera Platypedia and Melampsalta. Journal of the New York Entomological Society, 28, 95-145, pl. 5.
Delétang, L.F. (1923) Monografia de los Cicadidos (Cicadidae) argentinos y relacion de estos con la fauna sudamericana. Anales del Museo Nacional de Historia Natural Buenos Aires, 31, 538-649.
Desmarest, E. (1859) Annelés-Hémiptères. Encyclopédie d'Histoire Naturelle, 6, 195-283, pls 13-18, 38, 40.
Distant, W.L. (1881) Descriptions of new species belonging to the homopterous family Cicadidae. Transactions of the Entomological Society of London, 1881, 627-648.
Distant, W.L. (1882) On some undescribed Cicadidae from Australia and the Pacific region. Proceedings of the Zoological Society of London, 1882(1), 125-134, pl. VII.
Distant, W.L. (1883) Contributions to a proposed monograph of the homopterous family Cicadidae. Part 1. Proceedings of the Zoological Society of London, 1883, 187-194, pl. XXV.
Distant, W.L. (1889) A monograph of Oriental Cicadidae. Parts 1 and 2. Indian Museum, Calcutta, pp. 1-48, pls i-iv.
Distant, W.L. (1891) A monograph of Oriental Cicadidae. Parts 3 and 4. Indian Museum, Calcutta, pp. 49-96, pls v-ix.
Distant, W.L. (1892) A monograph of Oriental Cicadidae. Parts 5-7. Indian Museum, Calcutta, pp. i-xiv, 97-158, pls x-xv.
Distant, W.L. (1893) Descriptions of four new species of Cicadidae contained the Brussels Museum. Annales de la Société entomologique de Belgique, 37, 76-78. Separate paged 1-3.
Distant, W.L. (1897) Cicadidae from the Malay Archipelago. Annals and Magazine of Natural History, (6)20, 369-371.
Distant, W.L. (1901) Contributions to a knowledge of the Rhynchota. Transactions of the Entomological Society of London, 1901, 581-592, pl. 16.
Distant, W.L. (1904a) Rhynchotal notes.-XXVI. Annals and Magazine of Natural History, (7)14, 293-303.
Distant, W.L. (1904b) Rhynchotal notes.-XXVII. Annals and Magazine of Natural History, (7)14, 329-336.
Distant, W.L. (1904c) Rhynchotal notes.-XXVIII. Annals and Magazine of Natural History, (7)14, 425-430.
Distant, W.L. (1904d) Additions to a knowledge of the family Cicadidae. Transactions of the Royal Entomological Society of London, 1904: 667-676, pls 29-30.
Distant, W.L. (1905a) Rhynchotal notes.-XXIX. Annals and Magazine of Natural History, (7)15, 58-70.
Distant, W.L. (1905b) Rhynchotal notes.-XXX. Annals and Magazine of Natural History, (7)15, 304-319.
Distant, W.L. (1905c) Rhynchotal notes.-XXXI. Annals and Magazine of Natural History, (7)15, 379-387.
Distant, W.L. (1905d) Rhynchotal notes.-XXXII. Annals and Magazine of Natural History, (7)15, 478-486.
Distant, W.L. (1905e) Rhynchotal notes.-XXXIII. Annals and Magazine of Natural History, (7)16, $22-35$.
Distant, W.L. (1905f) Rhynchotal notes.-XXXIV. Annals and Magazine of Natural History, (7)16, 203-216.

Distant, W.L. (1905g) Rhynchotal notes.-XXXV. Annals and Magazine of Natural History, (7)16, 265-280.
Distant, W.L. (1905h) Rhynchotal notes.-XXXVI. Annals and Magazine of Natural History, (7)16, 553-576.
Distant, W.L. (1905i) Rhynchotal notes.-XXXVII. Annals and Magazine of Natural History, (7)16, 668-673.
Distant, W.L. (1906a) Some undescribed species of Cicadidae. Annals and Magazine of Natural History, (7)17, 384-389.
Distant, W.L. (1906b) Descriptions of a new species of Australian Cicadidae. Entomologist, 39, 148.
Distant, W.L. (1906c) Rhynchota. Heteroptera-Homoptera. The fauna of British India, including Ceylon and Burma. Published under the authority of the Secretary of State for India in Council, 3, i-xiv, 1-503.
Distant, W.L. (1906d) A synonymic catalogue of Homoptera. Part l. Cicadidae. British Museum, London, 207 pp.
Distant, W.L. (1906e) Undescribed Cicadidae. Annales de la Société Entomologique de Belgique, 50, 148-154.
Distant, W.L. (1906f) Order Rhynchota. Suborder Homoptera. Family Cicadidae. Insecta Transvaaliensia: a contribution to a knowledge of the entomology of South Africa, 7, 167-180, pls 16-17.
Distant, W.L. (1907) Rhynchotal notes.-XLIII. Annals and Magazine of Natural History, (7)20, 411-423.
Distant, W.L. (1909) New Malayan Rhynchota. Transactions of the Royal Entomological Society of London, 1909, 385-396, pl. 10.

Distant, W.L. (1910) Australian Cicadidae with remarks on some recent disputation. Annales de la Société Entomolique de Belgique, 54, 415-420.
Distant, W.L. (1911) New genera and species of Cicadidae. Annals and Magazine of Natural History, (8)8, 132-137.
Distant, W.L. (1912a) Homoptera. Fam. Cicadidae. Subfam. Cicadidae. Genera Insectorum, 142, 1-64, pls 1-7.
Distant, W.L. (1912b) Descriptions of new genera and species of Oriental Homoptera. Annals and Magazine of Natural History, (8)9, 181-194.
Distant, W.L. (1912c) Descriptions of some new Homoptera. Annals and Magazine of Natural History, (8)10, 438-446.
Distant, W.L. (1913a) Undescribed species of Cicadidae. Annals and Magazine of Natural History, (8)12, 485-491.
Distant, W.L. (1913b) Synonymical notes on some recently described Australian Cicadidae. Proceedings of the Linnean Society of New South Wales, 37(4), 600-601.
Distant, W.L. (1914a) Homoptera, Fam. Cicadidae, Subfam. Gaeaninae. Genera Insectorum, 158, 1-38, pls 1-3.
Distant, W.L. (1914b) Report on the Rhynchota collected by the Wollaston Expedition in Dutch New Guinea. Transactions of the Zoological Society of London, 20(11), 335-362, pl. XXXIV.
Distant, W.L. (1914c) Some undescribed Cicadidae. Annals and Magazine of Natural History, (8)14, 61-65.
Distant, W.L. (1914d) Rhynchota from New Caledonia and the surrounding islands. F. Sarasin \& J. Roux, Nova Caledonia, (Zoologie)1(4), 369-390; pls 11-12.
Distant, W.L. (1915) On some Australian Cicadidae. Annals and Magazine of Natural History, (8)16, 50-53.
Distant, W.L. (1920) Some undescribed Ethiopian Cicadidae. Annals and Magazine of Natural History, (9)5, 369-376.
Dlabola, J. (1963) Pinheya n.g. of Melampsaltini, discussion on near genera and faunistic notes on Rhodesian Cicadoidea (Homoptera Auchenorrhyncha). Publicaoes culturais da Companhia de Diamantes de Angola, 66, 45-53.
Dohrn, F.A. (1859) Catalogus Hemipterorum. Entomologischen Verein zu Stettin, Stettin, pp. 1-112.
Donovan, E. (1805) An epitome of the natural history of the insects of New Holland, New Zealand, New Guinea, Otaheite, and other islands in the Indian, Southern, and Pacific Oceans: including figures and descriptions of one hundred and fiftythree species of the more splendid, beautiful, and interesting insects, hitherto discovered in those countries, and which for the most part have not appeared in the works of any preceding author. Privately published, London. Pp. i-iv, 41 handcoloured plates (unnumbered) with corresponding text (unnumbered), index 2 pages (unnumbered).
Douglas, J.W. (1879) Note on the synonymy of Cicada montana Scop. Entomologist's Monthly Magazine, 15, 209-210.
Duffels, J.P. (1965) A new species of Cosmopsaltria Stål, with preliminary notes on the genus (Homoptera, Cicadidae). Nova Guinea, (Zool.)35, 371-376.
Duffels, J.P. (1968) On the identity of Orientopsaltria montivaga (Distant, 1889) and Orientopsaltria agatha (Moulton, 1911) comb. n. (Homoptera-Cicadidae). Beaufortia, 15(190), 79-84.
Duffels, J.P. (1970) The synonymy of Diceropyga opercularis (Walker) and D. insularis (Walker) with a description of D. breddini n.sp. (Homoptera, Cicadidae). Entomologische Berichten, 30, 9-16.
Duffels, J.P. (1977) A revision of the genus Diceropyga Stål 1870 (Homoptera, Cicadidae). Monografieën van de Nederlandsche Entomologische Vereeniging, 8, 1-227.
Duffels, J.P. (1979) Taxonomy and evolution of Cicadidae in the Papuan region. (Abstracts of Auchenorhyncha Workshop, 23-25th August, 1978, Wageningen, The Netherlands). Auchenorrhyncha Newsletter, 1, 19-20.
Duffels, J.P. (1982) Brachylobopyga decorata n. gen., n. sp. from Sulawesi, a new taxon of the subtribe Cosmopsaltriaria (Homoptera, Cicadoidea: Cicadidae). Entomologische Berichten, 42, 156-160.
Duffels, J.P. (1983a) Taxonomy, phylogeny and biogeography of the genus Cosmopsaltria, with remarks on the historic biogeography of the subtribe Cosmopsaltriaria (Homoptera: Cicadidae). Pacific Insects Monograph, 39, 1-127.
Duffels, J.P. (1983b) Distribution patterns of Oriental Cicadoidea (Homoptera) east of Wallace's Line and plate tectonics. In: Thornton, I.W.B. (ed.), Symposium on distribution and evolution of Pacific insects. Geojournal, 7(6), 479-564.
Duffels, J.P. (1985) Rhadinopyga n. gen. from the "Vogelkop" of New Guinea and adjacent islands, a new genus of the subtribe Cosmopsaltriaria (Homoptera, Cicadoidea: Cicadidae). Bijdragen tot de Dierkunde, 55(2), 275-279.
Duffels, J.P. (1986) Biogeography of Indo-Pacific Cicadoidea: a tentative recognition of areas of endemism. Cladistics, 2(4),

318-336.
Duffels, J.P. (1988a) The cicadas of the Fiji, Samoa and Tonga Islands, their taxonomy and biogeography (Homoptera, Cicadoidea). Entomonograph, 10, 1-108.
Duffels, J.P. (1988b) Biogeography of the cicadas of the island of Bacan, Maluku, Indonesia, with description of Diceropyga bacanensis n. sp. (Homoptera, Cicadidae). Tijdschrift voor Entomologie, 131, 7-12.
Duffels, J.P. (1990) Biogeography of Sulawesi cicadas (Homoptera: Cicadoidea). In: Knight, W.J. and Holloway, J.D. (eds), Insects and the rain forests of South East Asia (Wallacea). Royal Entomological Society, London, pp. 63-72.
Duffels, J.P. (1993) The systematic position of Moana expansa (Homoptera: Cicadidae), with reference to sound organs and the higher classification of the superfamily Cicadoidea. Journal of Natural History, 27, 1223-1237.
Duffels, J.P. (1997) Inflatopyga, a new cicada genus (Homoptera: Cicadoidea: Cicadidae) endemic to the Solomon Islands. Invertebrate Taxonomy, 11(4), 549-568.
Duffels, J.P. (2011) New genera and species of the tribe Taphurini (Hemiptera, Cicadidae) from Sundaland. Deutsche Entomologische Zeitschrift, 58: 77-104.
Duffels, J.P. and Boer, A.J. de (1990) Areas of endemism and composite areas in East Malesia. In: Baas, P. et al. (eds), The plant diversity of Malesia. Kluwer Academic Publishers, Netherlands, pp. 249-272.
Duffels, J.P. and van der Laan, P. A. (1985) Catalogue of the Cicadoidea (Homoptera, Auchenorhyncha) 1956-1980. Junk, Dordrecht, Netherlands, Series Entomologica, Vol. 34, 414 pp.
Dugdale, J.S. [1972]. Genera of New Zealand Cicadidae [Homoptera]. New Zealand Journal of Science, 14(4), 856-882.
Dugdale, J.S. and Fleming, C.A. (1969) Two New Zealand cicadas collected on Cook's Endeavour voyage, with descriptions of new species. New Zealand Journal of Science, 12(4), 929-957.
Dunn, K. (1991) New distribution records for some eastern Australian cicadas. Victorian Entomologist, 21, 52-53.
Dunn, K. (1992) Notes on the silver cicada Cicadetta celis Moulds. Victorian Entomologist, 22, 12-17.
Dunn, K. (1998) Butterfly watching in Tasmania - Part II. Victorian Entomologist, 28, 44-49.
Dworakowska, I. (1988) Main veins of the wings of Auchenorrhyncha (Insecta, Rhynchota: Hemelytrata). Entomologische Abhandlungen und Berichte aus dem Staatlichen Museum für Tierkunde in Dresden, 52(3), 63-108.
Emery, D.L. and Emery, S.J. (2002) First records for the paperbark cicada Cicadetta hackeri (Distant) and Cicadetta spinosa (Goding \& Froggatt) (Hemiptera: Cicadidae) from Sydney, New South Wales. Australian Entomologist, 29, 137-139.
Emery, D.L., Emery, S.J., Emery, N.J. and Popple, L.W. (2005) A phenological study of the cicadas (Hemiptera: Cicadidae) in western Sydney, New South Wales, with notes on plant associations. Australian Entomologist, 32, 97-110.
Erichson, W.F. (1842) Beitrag zur Insecten-Fauna von Vandiemensland, mit besonderer Berücksichtigung der geographischen verbreitung der Insecten, von Herausgeber. Archiv für Naturgeschichte, 8(2), 83-291, pls 4, 5.
Esaki, T. (1947) Hemiptera Micronesia, II. Cicadidae. Mushi, 17, 29-38, pl. 1.
Esaki, T. and Miyamoto, S. (1975) Insects of Micronesia. Homoptera: Cicadidae. Insects Micronesia, 6(9), 633-656.
Evans, J.W. (1941) The morphology of Tettigarcta tomentosa White, (Homoptera, Cicadidae). Papers and Proceedings of the Royal Society of Tasmania, 1940, 35-49.
Evans, J.W. (1946) A natural classification of leaf-hoppers (Homoptera, Jassoidea). Part 2: Aetalionidae, Hylicidae, Eurymelidae. Transactions of the Royal Entomological Society of London, 97(2), 39-54.
Evans, J.W. (1948) Some observations on the classification of the Membracidae and on the ancestry, phylogeny and distribution of the Jassoidea. Transactions of the Royal Entomological Society of London, 99(15), 497-515.
Evans, J.W. (1956a) Palaeozoic and Mesozoic Hemiptera (Insecta). Australian Journal of Zoology, 4(2), 165-258.
Evans, J.W. (1956b) Australian insects. Australian Museum Magazine, 12(4), 129-132.
Evans, J.W. (1957) Some aspects of the morphology and interrelationships of extinct and recent Homoptera. Transactions of the Royal Entomological Society of London, 109(9), 275-294.
Evans, J.W. (1958a) Insect distribution and continental drift. In: Carey, W. (ed.), Continental drift, a symposium, being a symposium on the present status of the continental drift hypothesis, held in the Geology Department of the University of Tasmania, in March, 1956. University of Tasmania Geology Department Symposia, 2, 134-161.
Evans, J.W. (1958b) Some aspects of the morphology, biology, evolution and distribution of Homoptera. Circular of the Society of Entomologists, Sydney, 66, 43-48.
Evans, J.W. (1959) The zoogeography of some Australian insects. In: Keast, A. et al. (eds), Biogeography and ecology in Australia. Junk, The Hague, pp. 150-163.
Evans, J.W. (1963) The phylogeny of the Homoptera. Annual Review of Entomology, 8, 77-94.
Evans, J.W. (1964) The periods of origin and diversification of the superfamilies of the Homoptera-Auchenorhyncha (Insecta) as determined by a study of the wings of Palaeozoic and Mesozoic fossils. Proceedings of the Linnean Society of London, 175, 171-181.
Evans, J.W. (1988) Some aspects of the biology, morphology, and evolution of leafhoppers (Homoptera: Cicadelloidea and Membracoidea). Great Basin Naturalist Memoirs, 12, 61-66.
Evans, J.W. (1989) Insect delight. A life's journey. xii, 212 pp. Brolga Press, Canberra.
Ewart, A. (1986) Cicadas of Kroombit Tops. Queensland Naturalist, 27, 50-57.
Ewart, A. (1988) Cicadas (Homoptera). In: Scott, G. (ed.), Lake Broadwater. The natural history of an inland lake and its environs. Darling Downs Institute Press, Toowoomba, pp. 180-201.

Ewart, A. (1989a) Cicada songs - song production, structures, variation and uniqueness within species. News Bulletin of the Entomological Society of Queensland, 17(7), 75-82.
Ewart, A. (1989b) Revisionary notes on the genus Pauropsalta Goding and Froggatt (Homoptera: Cicadidae) with special reference to Queensland. Memoirs of the Queensland Museum, 27(2), 289-375.
Ewart, A. (1993) Cicadas of the Heathlands region, Cape York Peninsula. In: Cape York Peninsula Scientific Expedition, Wet Season 1992 Report. Royal Geographical Society of Queensland, Geography Monograph Series, 3, 135-147.
Ewart, A. (1995) Cicadas. In: M. Ryan (ed.), Wildlife of greater Brisbane. Queensland Museum, Brisbane, pp. 79-88.
Ewart, A. (1998a) Cicadas, and their songs, of the Miles-Chinchilla region. Queensland Naturalist, 36, 54-72.
Ewart, A. (1998b) Cicadas of Musselbrook Reserve. In: Musselbrook Reserve Scientific Study Report. Royal Geographical Society of Queensland, Geography Monograph Series, 4, 135-138.
Ewart, A. (2001a) Emergence patterns and densities of cicadas (Hemiptera: Cicadidae) near Caloundra, south-east Queensland. Australian Entomologist, 28, 69-84.
Ewart, A. (2001b) Dusk chorusing behaviour in cicadas (Homoptera: Cicadidae) and a mole cricket, Brisbane, Queensland. Memoirs of the Queensland Museum, 46, 499-510.
Ewart, A. (2005a) New genera and species of small ticking and 'chirping' cicadas (Hemiptera: Cicadoidea: Cicadidae) from Queensland, with descriptions of their songs. Memoirs of the Queensland Museum, 51, 439-500.
Ewart, A. (2005b) Cicadas of the Pennyfather River - Weipa areas, October/November 2002, with comparative notes on the cicadas from Heathlands, Cape York Peninsula. In: Gulf of Carpentaria Scientific Study Report. Royal Geographical Society of Queensland, Geography Monograph Series, 10, 169-179.
Ewart, A. (2009a) Cicadas of the eastern segment of the Cravens Peak Reserve, northeastern Simpson Desert, S.W. Queensland; January/February 2007. In: Cravens Peak Scientific Study Report. Royal Geographical Society of Queensland, Geography Monograph Series, 13, 117-150.
Ewart, A. (2009b) Crotopsalta leptotigris, a new species of ticking cicada (Hemiptera: Cicadoidea: Cicadidae) from Cravens Peak, southwest Queensland. Australian Entomologist, 36, 139-151.
Ewart, A. and Marques, D. (2008) A new genus of grass cicadas (Hemiptera: Cicadoidea: Cicadidae) from Queensland, with descriptions of their songs. Memoirs of the Queensland Museum, 52, 149-202.
Ewart, A. and Popple, L.W. (2001) Cicadas, and their songs, from south-western Queensland. Queensland Naturalist, 39, 52-71.
Ewart, A. and Popple, L.W. (2007) Songs and calling behaviour of Froggattoides typicus Distant (Hemiptera: Cicadoidea: Cicadidae), a nocturnally singing cicada. Australian Entomologist, 34, 127-139.
Fabricius, J. C. (1775) Systema Entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Korte, Flensburg \& Leipzig, pp. 1-832.
Fabricius, J.C. (1803) Systema Rhyngotorum secundum ordines, genera, species, adiectis synonyms, locis, observationibus, descriptionibus. Akademische Druck- u. Verlagsanstalt, Graz, Austria, pp. i-x, 1-314, index 1-21. [Cicadas viii, 33-44. Second edition, 1822. Facsimilie reprint, 1971.]
Faithfull, I. (2010) Further records of vertebrate predation on cicadas (Hemiptera: Cicadidae). Victorian Entomologist, 40, 65-71.
Fleming, C.A. (1973) The Kermadec Islands cicada and its relatives (Hemiptera: Homoptera). New Zealand Journal of Science, 16, 315-322, pl. 1.
Fleming, C.A. (1975a) Acoustic behaviour as a generic character in New Zealand cicadas (Hemiptera: Homoptera). Journal off the Royal Society of New Zealand, 5(1), 47-64, figs 1-9.
Fleming, C.A. (1975b) Adaptive radiation in New Zealand cicadas. Proceedings of the American Philosophical Society, 119(4), 298-306.
Fleming, C.A. (1975c) Cicadas (2). In: Knox, R. (ed.), New Zealand's natural heritage. Volume 4. Part 57. Paul Hamlyn, Wellington, pp. 1591-1595.
Fleming, C.A. (1984) The cicada genus Kikihia Dugdale (Hemiptera, Homoptera). Part 1. The New Zealand green foliage cicadas. Records of the National Museum of New Zealand, 2(18), 191-206.
Froggatt, W.W. (1907) Australian insects. William Brooks, Sydney, 449 pp., 37 pls.
Germar, E.F. (1830) Species Cicadarium enumeratae et sub genera distributae. Thon's Entomologisches Archiv, 2(2), 37-57, pl. 1.
Germar, E.F. (1834) Observations sur plusieurs espèces du genre Cicada, Latr. Revue d'Entomologique Silbermann, 2, 49-82, pls 19-26.
Gerstaecker, C.E.A. (1863) Hemiptera-Homoptera. Peers, W.C.H., Carus, C.G. and Gerstaecker, C.E.A. Handbuch der Zoologie, 2, 1-642 [Cicadas pp. 285-303].
Goding, F.W. and Froggatt, W.W. (1904) Monograph of the Australian Cicadidae. Proceedings of the Linnean Society of New South Wales, 29(3), 561-670, pls XVIII, XIX.
Gomez-Menor, O.J. (1951) Homópteros que atacan a los frutales. Trabajos de la Estación de Fitopatologia Agronomica de Madris, 228, 1- 38.
Gomez-Menor, O.J. (1957) Monografia de cicadidos (Homoptera) de Espana. Memorias de la Real Academia de Ciencias Exactas, Fisicas y Naturales de Madrid, 19, 1-87.

Grimaldi, D. and Engel, M.S. (2005). Evolution of the insects. Cambridge University Press, New York. Pp. i-xv, 1-755.
Guérin-Méneville, F.E. (1830-1832, 1838) Insectes. In: L.I. Duperrey, Voyage autour du monde, exécuté par ordre du Roi, sur la corvette de sa Majesté, La Coquille, pendant les années 1822, 1823, 1824 et 1825, sous le ministère et conformément aux instructions de S.E.M. le Marquis de Clermont-Tonnerre, Ministre de la Marine; et publié sous les auspices de son Excellence Mgr le Cte de Chabrol, Ministre de la Marine et des Colonies. A. Bertrand, Paris. Text; Zoologie 2(2), Division 1 , pp. 57-302. Zoologie Atlas; Insects, pls 1-21. [The title page of the plates is dated 1826 but these were published in livraisons and the plates of insects appeared during 1830 and 1832 (and not in chronological order). Plate 10, the only plate illustrating cicadas, was published approximately 22 December, 1831. The text of the insects did not appear until 1838, sometime between 15th November and 31st December.]
Guérin-Méneville, F.E. (1844) Insectes. Iconographie du Régne Animal de G. Cuvier, ou représentation d'aprés nature de l'une des espéces les plus remarquables, et souvent non encore figurées, de chaque genre d'animaux. Avec un texte descriptif mis au courant de la science. Ouvrage pouvant servir d'atlas a tous les traités de zoologie 1829-1838. 1844, 1-576 [Cicadas pp. 355-370].
Gwynne, D.T. (1987). Sex-biased predation and the risky mate-locating behaviour of male tick-tock cicadas (Homoptera: Cicadidae). Animal Behaviour, 35, 571-576.
Gwynne, D.T., Yeoh, P. and Schatral, A. (1988) The singing insects of King's Park and Perth gardens. Western Australian Naturalist, 17, 25-71.
Handlirsch, A. (1925) Ordung: Homoptera (Latr.) Westw. (Homopteren) in Systematische Übersicht (Schluss.). Schröder's Handbuch der Entomologie, 3(17-18), 1102-1126.
Hansen, H.J. (1890) Gamle og nye hovedmomenter til Cicadariernes morphologi og systematik. Entomologisk Tidskrift utgifven af Entomologiska Föreningen i Stockholm, 11, 19-76, pls 1-2. [For English translations see Hansen 1902, 1903.]
Hansen, H.J., (1902) On the morphology and classification of the auchenorrhynchous Homoptera. Entomologist, 35, 214-217. [Partial translation of Hansen, 1890.]
Hansen, H.J. (1903) On the morphology and classification of the auchenorrhynchous Homoptera. [Continued.] Entomologist, 36, 42-44. [Partial translation of Hansen, 1890.]
Hardy, G.H. (1918) Tasmanian Cicadidae. Papers and Proceedings of the Royal Society of Tasmania, 1917, 69-71.
Haupt, H. (1929) Neueinteilung der Homoptera-Cicadina nach phylogenetisch zu wertenden Merkmalen. Zoologische Jahrbücher. Abteilung für Systematik, Okologie und Biologie der Tiere, Jena, 58, 173-286.
Haupt, H. (1935) Unterordnung: Gleichflügler, Homoptera. Die Tierwelt Mitteleuropas. Ein Handbuch zu ihrer Bestimmung als Grundlage fur faunistisch-zoogeographische Arbeiten. Unter Mitwirkung hervor-ragender Fachleuta herausgegeben von P. Brohmer, P. Ehrmann und G. Ulmer 4(3), 115-221.

Hawkeswood, T.J. (2007) Notes on the occurrence and habitat of a population of Thopha saccata (Fabricius, 1803) (Homoptera: Cicadidae) on the central coast of New South Wales, Australia. Calodema Supplementary Paper, 20, 1-2.
Hayashi, M. (1974) The cicadas of the genus Platypleura (Homoptera, Cicadidae) in the Ryukyu Archipelago, with the description of a new species. Kontyû, Tokyo, 42(3), 232-253.
Hayashi, M. (1975) On the species of the genus Meimuna Distant (Homoptera, Cicadidae) of the Ryukyus. 1. Synonymy and description of the species. Kontyû, Tokyo, 43(3), 281-298.
Haywood, B.T. (2006a) A study of the cicadas (Hemiptera: Homoptera) in the south east of South Australia - Part I. South Australian Naturalist, 80, 12-23.
Haywood, B.T. (2006b) A study of the cicadas (Hemiptera: Homoptera) in the south east of South Australia - Part II. South Australian Naturalist, 80, 48-53.
Heslop-Harrison, G. (1952) Preliminary notes on the ancestry, family relations, evolution and speciation of the Homopterous Psyllidae.-II. Annals and Magazine of Natural History, (12)5, 679-696.
Heslop-Harrison, G. (1957) The age and origin of the Hemiptera with special reference to the suborder Homoptera. Part II. The assessment, integration and use of the evidence from fossil and modern Homoptera in phylogenetic deduction. Proceedings of the University of Durham Philosophical Society, 13(6), 41-53.
Heslop-Harrison, G. (1960) Sound production in the Homoptera with special reference to sound producing mechanisms in the Psyllidae. Annals and Magazine of Natural History, (13)3, 633-640.
Hesse, A.J. (1925) Contributions to a knowledge of the fauna of South-West Africa. IV. A list of the heteropterous and homopterous Hemiptera of South-West Africa. Annals of the South African Museum 23, 1-190, pls 1-8. [Cicadas pp. 138-176, pls 6-8.]
Holloway, J.D. (1979) A survey of the Lepidoptera, biogeography and ecology of New Caledonia. Series Entomologica 15. Pp. i-xii, 1-588. W. Junk, The Hague. [Cicadas pp. 234-236.]
Horváth, G. de (1900) Hemiptera. In R. Semon, Zoologische Forschungsreisen in Australien und dem Malayischen Archipel. Denkschriften der Medizinisch-naturwissenschaftlichen Gesellschaft zu Jena, 8(17), 629-642.
Horváth, G. de (1911) Hemiptera nova vel minus cognita e regione palaearctica. II. Magyar Nemzeti Museum Annales His-torico-Naturales Budapest, 9, 573-610.
Horváth, G. de (1912a) Miscellanea Hemipterologica. X. Cicadidarum genera palaearctica. Magyar Nemzeti Museum Annales Historico-Naturales Budapest, 10, 602-606.
Horváth, G. de (1912b) Miscellanea Hemipterologica. XII. Adnotationes synonymicae et systematicae. Magyar Nemzeti

Horváth, G. de (1913) Étude morphologique sur la construction de l'élytre des Cicadides. Transactions of the International Congress of Entomology, 2, 422-432.
Horváth, G. (1926) Les noms génériques de nos trois grandes Cigales indigéenes. Magyar Nemzeti Museum Annales HistoricoNaturales Budapest, 23, 93-98.
Hudson, G.V. (1891) On the New Zealand Cicadae. Transactions of the New Zealand Institute, 23, 49-55, pl. 9.
Hudson, G.V. (1927) Notes on variation in neural structures of New Zealand cicadas. (Genus Melampsalta). Transactions and Proceedings of the New Zealand Institute, 58, 73-74.
Hudson, G.V. (1950) Fragments of New Zealand entomology. A popular account of all the New Zealand cicadas. The natural history of the New Zealand glow-worm. A second supplement to The Butterflies and Moths of New Zealand and notes on many other native insects. Ferguson and Osborn, Wellington. Pp. 1-188, pls A-B, 1-17.
Imhof, O.E. (1905) Zur Kenntnis des Baues der Insektenflügel insbesondere bei Cicadiden. Zeitschrift für Wissenschaftliche Zoologie, 83, 211-223.
Imhof, O.E. (1929) Berichtigungen zur Kenntnis des Baues von Insektenflugeln. Transactions of the International Congress of Entomology, 4, 793-794.
Imhof, O.E. (1933) Ailes des Cicadides. Type de la majorité. Comptes Rendus des la Congrès International d'Entomologie, 5, 303-308.
Imhof, O.E. (1940) Pteronologica. Transactions of the International Congress of Entomology 6(1), 393-397.
Imms, A.D. (1957) A general textbook of entomology including the anatomy, physiology, development and classification of insects. Methuen, London and Dutton, New York. x, 886 pp.
Jacobi, A. (1903) Singcikaden von Ost-Neuguinea. Sitzungsberichte der Gesellschaft der naturforschende Freunde zu Berlin, 1903, 10-15.
Jacobi, A. (1905) Zur Kenntnis der Cicadenfauna von Tonking. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere, 21, 425-446, pl. 21.
Jacobi, A. (1941) Die Zikadenfauna der Kleinen sundainseln. Nach. der Expeditionsausbeute von B. Rensch. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere, 74, 277-322, pl. 5.
Josephson, R.K. and Young, D. (1981). Synchronous and asynchronous muscles in cicadas. Journal of Experimental Biology, 91, 219-237.
Jong, M.R. de (1982) The Australian species of the genus Lembeja Distant, 1892 (Homoptera, Tibicinidae). Bijdragen tot de Dierkunde, 52(2), 175-185.
Jong, M.R. de (1985) Taxonomy and biogeography of Oriental Prasiini I: the genus Prasia Stål, 1863 (Homoptera, Tibicinidae). Tijdschrift voor Entomologie, 128(2), 165-191.
Jong, M.R. de (1986) Taxonomy and biogeography of Oriental Prasiini. 2. The foliata group of the genus Lembeja Distant, 1892 (Homoptera, Tibicinidae). Tijdschrift voor Entomologie, 129(5), 141-180.
Jong, M.R. de (1987) Taxonomy and biogeography of Oriental Prasiini 3: the fatiloqua and parvula groups of the genus Lembeja Distant, 1892 (Homoptera, Tibicinidae). Tijdschrift voor Entomologie, 130, 177-209.
Jong, M.R. de and Duffels, J.P. (1981) The identity, distribution and synonymy of Lembeja papuensis Distant, 1897 (Homoptera, Tibicinidae). Bulletin zoologisch Museum Universiteit van Amsterdam, 8(7), 53-62.
Josephson, R.K. and Young, D. (1981) Synchronous and asynchronous muscles in cicadas. Journal of Experimental Biology, 91, 219-237.
Karsch, F.A.F. (1890a) Beiträge zur Kenntniss der singcikaden Afrika's und Madagaskar's. Berliner Entomologische Zeitschrift, 35, 85-130, pls 3-4.
Karsch, F.A.F. (1890b) Ueber die Singcicadengattung Perissoneura Distant. Entomologische Nachrichten, 17, 190-192.
Kato, M. (1925a) Japanese Cicadidae, with descriptions of two new species, one new subspecies and aberrant form. Transactions of the Formosa Natural History Society, 15, 92-101.
Kato, M. (1925b) Japanese Cicadidae, with descriptions of new species. Transactions of the Formosa Natural History Society $15,1-47,1 \mathrm{pl}$.
Kato, M. (1925c) The Japanese Cicadidae, with descriptions of some new species and genera. Transactions of the Formosa Natural History Society, 15, 55-76, pls 1-2. [In Japanese.]
Kato, M. (1926) [Observations on Mogannia hebes.] Insect World, 30, 146-152. [In Japanese.]
Kato, M. (1927) A catalogue of Japanese Cicadidae, with descriptions of new genus, species and others. Transactions of the Formosa Natural History Society, 17, 19-41. [In Japanese.]
Kato, M. (1930) [Distribution of Japanese Cicadidae.] Insect World, 34, 146-150. (In Japanese)
Kato, M. (1931) Notes on the distribution of Cicadidae in Japanese Empire. Bulletin of the Biogeographical Society of Japan, 2, 36-76. [Separate paged 1-41.]
Kato, M. (1932) Monograph of Cicadidae. San Sei Do, Tokyo. 450 pp., 32 pls. [In Japanese but partly supplemented by English.]
Kato, M. (1933) Notes on the sound organs of Cicadidae and Orthoptera. Entomological World, 1, 348-357, pls 25-27.
Kato, M. (1941) [On the Cicadidae from South Sea Islands]. Kagaku Nanyo, 4, 53-55.
Kato, M. (1944) [Title in Japanese]. Bulletin of the Cicadidae Museum, 14, 1-8.

Kato, M. (1954) [Cicadas of Japan, (3)]. [Shin Konchu, 7(11)], 40-47.
Kato, M. (1956) The biology of the cicadas. [Bulletin of the Cicadidae Museum.] 319 pp., 46 pls. Iwasaki Shoten, Jinbocho Kanda, Tokyo. [In Japanese; headings, subheadings, captions and index in English. Facsimilie reprint, 1981, Scientist Inc., Japan.]
Kato, M. (1961) Cicadidae (Insecta). [Fauna Japonica.] xiv, 72 pp, pls I-XXXIV. Biogeographical Society of Japan, Tokyo.
Kirby, W.F. (1889) On the insects (exclusive of Coleoptera and Lepidoptera) of Christmas Island. Proceedings of the Zoological Society of London, 1888, 546-555.
Kirby, W.F. (1896.) Notes on the Cicadidae of New Zealand. Transactions and Proceedings of the New Zealand Institute, 28, 454-459.
Kirby, W.F. (1897) Sub-order Homoptera. (Frog-hoppers, plant-lice, etc.). The concise knowledge natural history 1897. xvi, 771 pp., 4 pls.
Kirkaldy, G.W. (1900) Bibliographical and nomenclatorial notes on the Rhynchota. No. 1. Entomologist, 33, 238-243.
Kirkaldy, G.W. (1903a) On the nomenclature of the genera of the Rhynchota; Heteroptera and auchenorrhynchous Homoptera. Entomologist, 36, 213-216.
Kirkaldy, G.W. (1903b) On the nomenclature of the genera of the Rhynchota; Heteroptera and auchenorrhynchous Homoptera. Entomologist, 36, 230-233.
Kirkaldy, G.W. (1904) Bibliographical and nomenclatorial notes on the Hemiptera.- No. 3. Entomologist, 37, 279-283.
Kirkaldy, G.W. (1907a) Leaf-hoppers-supplement. (Hemiptera.). Bulletin of the Hawaii Sugar Planters' Association, Division of Entomology, 3, 1-186, pls 1-20.
Kirkaldy, G.W. (1907b) Some annotations to M. Distant's recent Catalogue of the Cicadidae. (Hem.). Annales de la Société Entomologique de Belgique, 51, 303-309; [Separate paged 1-7.]
Kirkaldy, G.W. (1909) Hemiptera, old and new, No. 2. Canadian Entomologist, 41(11), 388-392. [Not published 1910 as sometimes stated.]
Kolenati, F. (1857) Meletamata Entomologica. Bulletin de la Société Impériale des Naturalistes Moscou (Section Biologique), 30, 399-444, pls V-VI.
Kramer, S. (1950) The morphology and phylogeny of auchenorhynchous Homoptera (Insecta). Illinois Biological Monographs, 20(4), i-vii, 1-111.
Kuhlgatz, T. (1905) Schadliche Wanzen und Cicaden der Baumwollstauden. Mitteilungen aus dem Zoologischen Museum, Berlin, 3, 31-115, pls 2-3.
Lallemand, V. and Synave, H. (1953) Homoptères de Sumba et Flores. In Wissenschaftliche Ergebnisse der Sumba-expedition des Museums fur Volkerkunde und des Naturhistorischen Museums in Basel, 1949. Verhandlungen der Naturforschenden Gesellschaft in Basel, 64, 229-254.
Lameere, A. (1935) Hémiptères. Précis de Zoologie, 4, 383-458.
Lane, D.H. (1993) Can flawed statistics be a substitute for real biology? New Zealand Journal of Zoology, 20, 51-59.
Lane, D.H. (1995) The recognition concept of species applied in an analysis of putative hybridization in New Zealand cicadas of the genus Kikihia (Insecta: Hemiptera: Tibicinidae). In: Lambert, D.M. and Spencer, H.G. (eds), Speciation and the recognition concept theory and application. Pp . 367-421.
Lawrence, J.F., Nielsen, E. S. and Mackerras, I. M. (1991) Skeletal anatomy and key to orders. Chapter 1 in Naumann, I. D. (ed.), The insects of Australia. Division of Entomology, CSIRO, Canberra and Melbourne University Press, Carlton. Pp. 3-32.
Lea, A.M. (1926) The black cicada or red-eye (Psaltoda moerens Germ.). South Australian Naturalist, 7(2), 39-41.
Leach, W.E. (1814) The zoological miscellany; being descriptions of new, or interesting animals. Vol. 1. Nodder \& Son, London. Pp. 1-144, pls 1-60. [Index (pp. 139-144), published 1815].
Lee, Y.J. (2008) A checklist of Cicadidae (Insecta: Hemiptera) from Vietnam, with some taxonomic remarks. Zootaxa, 1787, 1-27.
Lee, Y.J. and Hill, K.B.R. (2010) Systematic revision of the genus Psithyristria Stål (Hemiptera: Cicadidae) with seven new species and a molecular phylogeny of the genus and higher taxa. Systematic Entomology, 35: 277-305.
Leston, D. and Pringle, J.W.S. (1963) Acoustical behaviour of Hemiptera. In: R.-G. Busnel (Ed), Acoustic behaviour of animals. Elsevier Publishing Co., Amsterdam, pp. 391-411.
Linden von, G.M. (1901) Die Flugelzeichnung der Insekten. Biologisches Zentralblatt, 21, 753-779. [Cicadas pp. 760-761.]
Linnaeus, C. (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1. Regnum Animale, 10th edition. Laurentii Salri, Stockholm (Holmiae). Pp. i-iv, 1-824.
Lloyd, M. and Dybas, H.S. (1966) The periodical cicada problem. II. Evolution. Evolution, Lancaster, Pa., 20(4), 466-505.
Ludwig, H. (1886) Unterordnung. Homoptera. Gleichflüger, Zirpen. Dr. Johannes Leunis Synopsis der Thierkunde. Ein Handbuch für höhere Lehranstalten und fur Alle welche sich wissenschaftlich mit der Naturgeschichte der Thiere beschaftigen wollen. Dritte, Auflage 2, i-xvi, 1-1231. [Cicadas pp. 462-467.]
MacLachlan, R. (1891) The genus Perissoneura. Entomologische Nachrichten, Berlin, 17, 319-320.
Marschall, A.F. (1873) Hemiptera. Nomenclator Zoologicus continens nomina Systematica generum animalium tam viventium quam fossilium, secundum ordinem alphabeticum disposita. Sub auspicus et sumptibus C.R. Societatis Zoologico-Botani-
cae. iv, 482 pp. [Cicadas pp. 351-385.]
Marshall, D.C., Slon, K., Cooley, J.R., Hill, K.B.R. and Simon, C. (2008) Steady Plio-Pleistocene diversification and a 2-mil-lion-year sympatry threshold in a New Zealand cicada radiation. Molecular Phylogenetics and Evolution, 48, 1054-1066.
Marshall, D.C., Hill, K.B.R., Fontaine, K.M., Buckley, T.R. and Simon, C. (2009) Glacial refugia in a maritime temperate climate: cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand. Molecular Ecology, 18, 1995-2009.
Marshall, D.C., Hill, K.B.R., Cooley, J.R. and Simon, C. (2011) Hybridization, mitochondrial DNA phylogeography, and prediction of early stages of reproductive isolation: lessons from New Zealand cicadas (genus Kikihia). Systematic Biology, 60: 482-502.
Matsuda, R. (1970) Morphology and evolution of the insect thorax. Memoirs of the Entomological Society of Canada, 76, 1-431.
Matsuda, R. (1976) Morphology and evolution of the insect abdomen. With special reference to developmental patterns and their bearings upon systematics. viii, 534 pp. Pergamon Press, Oxford.
Matsumura, S. (1907) Die Cicadinen Japans. Annotationes Zoologicae Japonenses, 6, 83-116.
Matsumura, S. (1917) A list of the Japanese and Formosan Cicadidae, with descriptions of new species and genera. Transactions of the Sapporo Natural History Society, 6, 186-212.
McCoy, F. (1880) Natural history of Victoria. Prodromus of the zoology of Victoria; or, figures and descriptions of the living species of all classes of the Victorian indigenous animals. 5, 1-58, pls 41-50.
McKeown, K.C. (1944) Australian insects. XX. Hemiptera-Homoptera-The cicadas (continued). Australian Museum Magazine, 8(7), 234-237.
Metcalf, Z.P. (1944) List of journals and topical index. A bibliography of the Homoptera (Auchenorhyncha) 2, 1-186.
Metcalf, Z.P. (1947) The center of origin theory. Journal of the Elisha Mitchell Scientific Society, 62, 149-175, pls 23-41.
Metcalf, Z.P. (1963) General catalogue of the Homoptera. Fasc. 8. Cicadoidea. Part 1: Cicadidae; vii, 919 pages. Part 2: Tibicinidae; vi, 492 pages. [Species index by Virginia Wade, 1964, 26 pp.] University of North Carolina State College, Raleigh, U.S.A.
Moss, J.T.St.L. (1989) Notes on the Tasmanian cicada fauna with comments on its uniqueness. Queensland Naturalist, 29, 102-106. [Reprinted, 2000, in Invertebrata 16, 6-8.]
Moss, J.T.St.L. and Moulds, M.S. (2000) A new species of Psaltoda Stål, with notes on comparative morphology and song structure (Hemiptera: Cicadidae). Australian Entomologist, 27, 47-60.
Moss, J.T.St.L. and Popple, L.W. (2000) Cicada, butterfly and moth records from the Gibraltar Range, New South Wales (Hemiptera: Cicadidae; Lepidoptera). Queensland Naturalist, 38, 53-60.
Moulds, M.S. (1978) A new species of Henicopsaltria Stål (Homoptera: Cicadidae) from north Queensland. Journal of the Australian Entomological Society, 17(3), 225-228.
Moulds, M.S. (1984) Psaltoda magnifica sp.n. and notes on the distribution of other Psaltoda species (Homoptera: Cicadidae). General and Applied Entomology, 16, 27-32.
Moulds, M.S. (1985) Illyria, a new genus for Australian cicadas currently placed in Cicada L. (= Tettigia Amyot) (Homoptera: Cicadidae). General and Applied Entomology, 17, 25-35.
Moulds, M.S. (1986) Marteena, a new genus for the cicada Tibicen rubricinctus Goding and Froggatt (Homoptera: Tibicinidae). General and Applied Entomology, 18, 39-41.
Moulds, M.S. (1987) The specific status of Pauropsalta nigristriga Goding and Froggatt (Homoptera: Cicadidae) with the description of an allied new species. Australian Entomological Magazine, 14(1,2), 17-22.
Moulds, M.S. (1988) The status of Cicadetta and Melampsalta (Homoptera: Cicadidae) in Australia with the description of two new species. General and Applied Entomology, 20, 39-48.
Moulds, M.S. (1990) Australian cicadas. New South Wales University Press, Kensington. 217 pp., 24 pls.
Moulds, M.S. (1992) Two new species of Macrotristria Stål (Hemiptera: Cicadidae) from Queensland. Australian Entomological Magazine, 19(4), 133-138.
Moulds, M.S. (1993) Henicopsaltria danielsi sp.n. and a new locality for H. eydouxii (Hemiptera: Auchenorrhyncha: Cicadidae). General and Applied Entomology, 25, 23-26.
Moulds, M.S. (1994) The identity of Burbunga gilmorei (Distant) and B. inornata Distant (Hemiptera: Cicadidae) with descriptions of two allied new species. Journal of the Australian Entomological Society, 33, 97-103.
Moulds, M.S. (1996) Review of the Australian genus Gudanga Distant (Hemiptera: Cicadidae) including new species from Western Australia and Queensland. Journal of the Australian Entomological Society, 35, 19-31.
Moulds, M.S. (2001) A review of the Thophini Distant (Hemiptera: Cicadoidea: Cicadidae) with the description of a new species of Thopha Amyot \& Serville. Insect Systematics and Evolution, 31, 195-203.
Moulds, M.S. (2002) Three new species of Psaltoda Stål from eastern Australia (Hemiptera: Cicadoidea: Cicadidae). Records of the Australian Museum, 54, 325-334.
Moulds, M. S. (2003) An appraisal of the cicadas of the genus Abricta Stål and allied genera (Hemiptera: Auchenorrhyncha: Cicadidae). Records of the Australian Museum, 55, 245-304.
Moulds, M.S. (2005a) An appraisal of the higher classification of cicadas (Hemiptera: Cicadoidea) with special reference to the Australian fauna. Records of the Australian Museum, 57, 375-446. http:/www.amonline.net.au/pdf/publications/ 1447_complete.pdf

Moulds, M.S. (2005b) Song analyses of cicadas of the genera Aleeta Moulds and Tryella Moulds (Hemiptera: Cicadidae). Proceedings of the Linnean Society of New South Wales, 126, 133-142.
Moulds, M.S. (2008a) Thopha hutchinsoni, a new cicada (Cicadoidea: Cicadidae) from western Australia, with notes on the distribution and colour polymorphism of Thopha sessiliba Distant. Australian Entomologist, 35, 129-140.
Moulds, M.S. (2008b) Talcopsaltriini, a new tribe for a new genus and species of Australian cicada (Hemiptera: Cicadoidea: Cicadidae). Records of the Australian Museum, 60, 207-214. http:/www.amonline.net.au/pdf/publications/1496_complete.pdf
Moulds, M.S. (2010) Platypleura tepperi Goding \& Froggatt, 1904 (Cicadoidea: Cicadidae), a Madagascan cicada erroneously recorded from Australia. Australian Entomologist, 37, 11-12.
Moulds, M.S. and Carver, M. (1991) Superfamily Cicadoidea. In: The insects of Australia. A textbook for students and research workers. Second edition. Vol. 1, pp. 465-467. Melbourne University Press, Carlton.
Moulds, M.S. and Hangay, G. (1998) First record of the bladder cicada Cystosoma saundersii (Westwood) from Lord Howe Island (Hemiptera: Cicadidae). Australian Entomologist, 25(3), 75-76.
Moulds, M.S. and Kopestonsky, K.A. (2001) A review of the genus Kobonga Distant with the description of a new species (Hemiptera: Cicadidae). Proceedings of the Linnean Society of New South Wales, 123, 141-157.
Moulds, M.S. and Owen, C.L. (2011) Pauropsalta walkeri, a new species of cicada (Homoptera: Cicadidae: Cicadinae) from northern Australia. Australian Entomologist, 38, 145-154.
Moulton, J.C. (1923) Cicadas of Malaysia. Journal of the Federated Malay States Museum, 11, 69-182, pls 1-5.
Muir, F.A.G. (1930) Notes on certain controversial points of morphology of the abdomen and genitalia of Psyllidae. Annals and Magazine of Natural History, (10)5, 545-552.
Myers, J.C. (1921) A revision of the New Zealand Cicadidae (Homoptera), with descriptions of new species. Transactions and Proceedings of the New Zealand Institute, 53, 238-250, pls 45-46.
Myers, J.G. (1922) The order Hemiptera in New Zealand, with special reference to its biological and economic aspects. New Zealand Journal of Science and Technology, 5, 1-12.
Myers, J.G. (1923) New species of New Zealand Cicadidae. Transactions and Proceedings of the New Zealand Institute, 54, 430-431.
Myers, J.G. (1928a) Cicadidae. Insects of Samoa and other Samoan terrestrial Arthropoda, 2(2), 55-65.
Myers, J.G. (1928b) The morphology of the Cicadidae (Homoptera). Proceedings of the Zoological Society of London, 1928, 365-472.
Myers, J.G. (1929a) The taxonomy, phylogeny, and distribution of New Zealand Cicadas (Homoptera). Transactions of the Royal Entomological Society of London, 77, 29-60, pls 2-4.
Myers, J.G. (1929b) Insect singers. A natural history of the cicadas. xix, 304 pp., pls I-VII.
Naruse, K. and Nakane, T. (1971) [On the cicadas of the Bonin Islands (Hemiptera: Cicadidae)]. Proceedings of the Japanese Society for Systematic Zoology, 7, 61-64. [In Japanese.]
Nast, J. (1972) Palaearctic Auchenorrhyncha (Homoptera). An annotated check list. 550 pp. [Cicadas pp. 136-156], Polish Scientific Publishers, Warszawa.
Neave, S.A. (1939a) Nomenclator zoologicus. A list of the names of genera and subgenera in zoology from the tenth edition of Linnaeus 1758 to the end of 1935. Zoological Society of London, Regent's Park. 1, v-xiv, 1-957.
Neave, S.A. (1939b) Nomenclator zoologicus. A list of the names of genera and subgenera in zoology from the tenth edition of Linnaeus 1758 to the end of 1935. Zoological Society of London, Regent's Park. 2, 1-1025.
Neave, S.A. (1940a) Nomenclator zoologicus. A list of the names of genera and subgenera in zoology from the tenth edition of Linnaeus 1758 to the end of 1935. Zoological Society of London, Regent's Park. 3, 1-1065.
Neave, S.A. (1940b) Nomenclator zoologicus. A list of the names of genera and subgenera in zoology from the tenth edition of Linnaeus 1758 to the end of 1935. Zoological Society of London, Regent's Park. 4, 1-758.
Nel, A. (1996) Un Tettigarctidae fossile du Lias européen (Cicadomorpha, Cicadoidea, Tettigarctidae). Ecole pratique des hautes Etudes, Biologie et Evolution des Insectes, 9, 83-94.
Nixon, K. C. (1992) Clados version 1.2. Computer program and reference manual. Privately published by the author.
Olive, J.C., 2007. A new species of Gudanga Distant (Hemiptera: Cicadidae) from northern Queensland. Australian Entomologist, 34, 1-6.
Orian, A.J.E. (1954) A synopsis of the Cicadidae of Mauritius, with a description of Mauricia claudeae, gen. et. sp. n. Annals and Magazine of Natural History, (12)7, 233-237, pl. V.
Oshanin, V.T. (1906) Verzeichnis der paläarktischen Hemipteren mit besonderer Berücksichtigung ihrer Verteilung im Russischen Reiche. II. Band. Homoptera. I. Lieferung. Annuaire de Musée Zoologique de l'Acaémie Impériale des Sciences de St.-Pétersbourg, 1, i-xvi, 1-192.
Oshanin, V.T. (1908) Verzeichnis der paläarktischen Hemipteren mit besonderer Berücksichtigung ihrer Verteilung im Russischen Reiche. II. Band. Homoptera. III. Lieferung. Annuaire de Musée Zoologique de l'Acaémie Impériale des Sciences de St.-Pétersbourg, 13, 385-492.
Oshanin, V.T. (1912) Katalog der paläarktischen Hemipteren (Heteroptera, Homoptera-Auchenorhyncha und Psylloideae). Pp. i-xvi, 1-187.
Ossiannilsson, F. (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish

Homoptera Auchenorrhyncha with notes on their sound-production. Opuscula Entomologica. Supplementum, 10, 1-145.
Ouchi, Y. (1938) Contributiones ad cognitionem insectrum Asiae Orientalis. V. A preliminary note on some Chinese cicadas with two new genera. Journal of the Shanghai Science Institute, (3)4, 75-111, pls V-VI.
Overmeer, W.P.J. and Duffels, J.P., (1967) A revisionary study of the genus Dundubia Amyot and Serville (Homoptera, Cicadidae). Beaufortia, 14(166), 29-59.
Pesson, P. (1951) Ordre des Homoptères (Homoptera Leach, 1815). Traité de zoologie. Anatomie, systématique, biologie, 10, 1390-1656.
Piton, L. and Theobald, N. (1937) Les insectes fossiles de Menat. Revue des Sciences Naturelles d'Auvergne, (n.s.)3, 76-88.
Popov, A.V. (1975a) The structure of the timbals and the characteristics of the sound signals in singing cicadas (Homoptera, Cicadidae) in the southern regions of the USSR. Entomological Review, Washington, 54(2), 7-35. [A translation of Popov, 1975b]
Popov, A.V. (1975b) The structure of the timbals and characteristics of sound signals of singing cicadas (Homoptera, Cicadidae) from the southern regions of the USSR. Entomologicheskoe Obozrênie, 54(2), 258-290.
Popple, L.W. (2003) A new species of Cicadetta Amyot (Hemiptera: Cicadidae) from Queensland, with notes on its calling song. Australian Entomologist, 30, 107-114.
Popple, L.W. and Emery, D.L. (2010) A new cicada genus and a redescription of Pauropsalta subolivacea Ashton (Hemiptera: Cicadidae) from eastern Australia. Australian Entomologist, 37: 147-156.
Popple, L.W. and Strange, A.D. (2002). Cicadas, and their songs, from the Tara and Waroo Shires, southern central Queensland. Queensland Naturalist, 40: 15-30.
Popple, L.W., Walter, G.H. and Raghu, S. (2008) The structure of calling songs in the cicada Pauropsalta annulata Goding and Froggatt (Hemiptera: Cicadidae): evidence of diverging populations? Evolutionary Ecology, 22, 203-215.
Pringle, J.W.S. (1957) The structure and evolution of the organs of sound-production in cicadas. Proceedings of the Linnean Society of London, 167, 144-159.
Puissant, S. and Sueur, J. (2010). A hotspot for Mediterranean cicadas (Insecta: Hemiptera: Cicadidae): new genera, species and songs from southern Spain. Systematics and Biodiversity, 8, 555-574.
Schmidt, E. (1925) Zwei neue Singcicaden von der Insel Sumba. Societas Entomologica, 40, 42-43.
Schmidt, E. (1926) Fauna Buruana. Homoptera. Treubia, 7, 217-258.
Schmidt, E. (1928) Die Zikaden des Buitenzorger Museums. (Hemipt.-Homopt.). I. Treubia, 10, 107-144.
Schremmer, F. (1957) Singzikaden. Neue Brehm Bücherei, 193, 1-47. A. Ziemsen Verlag, Wittenberg-Lutherstadt
Schulze, F.E., Kükenthal, W. and Heider, K. (1926-40) Nomenclator animalium generum et subgenerum. Im Auftrage der Preussische Akademie der Wissenschaften zu Berlin, 1(1)-5(25), 1-3692, I-CCCXLIV.
Seabra, A.F. de (1942) Contribuïcoes para o inventário da fauna lusitanica. Insecta Homoptera (Cicadoideae e Fulgoroideae). Memórias e Estudos do Museu Zoológica da Universudade de Coimbra, 121, 1-14.
Shcherbakov, D.E. (2009) Review of the fossil and extant genera of the cicada family Tettigarctidae (Hemiptera: Cicadoidea). Russian Entomological Journal 17, 343-348.
Signoret, V. (1860) Faune des Hémiptères de Madagascar. 1re partie. Homoptères. Annales de la Société entomologique de France, (3)8, 177-206, pls 4-5.
Signoret, V. (1891) Descriptions de quelques Hémiptères nouveaux du Sénégal. Annales de la Société Entomologique de France, 60, 467-472.
Singh-Pruthi, H. (1925) The morphology of the male genitalia in Rhynchota. Transactions of the Royal Entomological Society of London, 1925, 127-267, pls 6-32.
Smith, S. (2010) An extension to the range of Cicadetta spinosa (Goding and Froggatt) (Cicadidae) to central Victoria. Victorian Entomologist, 40, 112.
Spinola, M. (1850) Tavola sinotticva dei generi spettanti alla classe degli insetti artroidignati, Hemiptera, Linn. Latr.-Rhyngota, Fab.-Rhynchota, Burm. Memorie della Società Italiana delle Scienze residente in Modena, 25(1), 1-60. [Reprinted, 1852, Memorie di Matematica e di Fisica della Società Italiana delle Scienze, 25(1), 90-99.]
Stål, C. (1855) Hemiptera från Kafferlandet. Öfversigt af Kongliga Svenska Vetenskaps-Akademiens Förhandlingar, Stockholm, 12, 89-100
Stål, C. (1861) Genera nonnulla nova Cicadinorum. Annales de la Société Entomologique de France, (4)1, 613-622.
Stål, C. (1862a) Synonymiska och systematiska anteckningar ofver Hemiptera. Öfversigt af Kongliga Svenska VetenskapsAkademiens Förhandlingar, Stockholm, 19, 479-504.
Stål, C. (1862b) Bidrag till Rio Janeiro-traktens Hemipter-fauna. II. Öfversigt af Kongliga Svenska Vetenskaps-Akademiens Förhandlingar, Stockholm, 3(6), 1-75.
Stål, C. (1863a) Hemipterorum exoticorum generum et specierum nonnullarum novarum descriptiones. Transactions of the Royal Entomological Society of London, (3)1, 571-603.
Stål, C. (1863b) Synonymiska och systematiska antecknigar öfver Hemiptera. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 19, 479-504.
Stål, C. (1866a) Hemiptera Africana. Hemiptera Homoptera Latr. Vol. 4. 276 pages, 1 pl. Officina Norstedtiana, Holmiae.
Stål, C. (1866b) Analecta Hemipterologica. Berliner Entomologische Zeitschrift, 10, 151-172.
Stål, C. [1870a] Hemiptera Fabriciana. Fabricianska Hemipterarter efter de i Köpenhamn och Kiel förvarade typexemplaren granskade och beskrifne. 2. Handlingar Kongliga Svenska Vetenskaps Akademiens, Stockholm, 8(1), 1-130. [Title page
dated 1869 but this issue not published until 1870.]
Stål, C. (1870b) Hemiptera insularum Philippinarum. Bidrag till Philippionska öarnes Hemipter-fauna. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, Stockholm 27, 607-776, pls VII-IX.
Steinbauer, M.J. (1997) Notes on Psaltoda moerens (Germar) (Hemiptera: Cicadidae) in Tasmania. Australian Entomologist, 24 169-171.
Swofford, D. L. (1998) PAUP* 4.0. Phylogenetic analysis using parsimony. Beta version 4.0b2. Smithsonian Institution.
Tillyard, R. J. (1926) The insects of Australia and New Zealand. Angus \& Robertson, Sydney. 560 pp., 44 pls.
Walker, F. (1850) List of the specimens of homopterous insects in the collection of the British Museum. Part 1. British Museum, London. Pp. 1-260.
Walker, F. (1852) List of the specimens of homopterous insects in the collection of the British Museum. Part 4. British Museum, London. Pp. 908-1188.
Walker, F. (1858a) Homoptera. Insecta saundersiana: or characters of undescribed insects in the collection of William Wilson Saunders, Esq. 2, 1-117.
Walker, F. (1858b) List of the specimens of homopterous insects in the collection of the British Museum. Supplement. British Museum, London. Pp. [i-ii], 1-369.
Walker, F. (1862) Characters of undescribed species of Homoptera in the collection of F. P. Pascoe, F. L. S. Journal of Entomology 1(5), 303-319, pl. 15.
Walker, F. (1868) Catalogue of the homopterous insects collected in the Indian Archipelago by Mr. A.R. Wallace, with descriptions of new species. Journal and Proceedings of the Linnean Society of London, 10, 82-193, pl. 3.
Walker, F. (1870) Catalogue of the homopterous insects collected in the Indian Archipelago by Mr A.R. Wallace, with descriptions of new species. Journal and Proceedings of the Linnean Society of London 10, 82-193, pl. 3.
Waterhouse, C.O. (1902) Index zoologicus. An alphabetical list of names of genera and subgenera proposed for use in zoology as recorded in the "Zoological Record" 1880-1900, together with other names not included in the "Nomenclator Zoologicus" of S.H. Scudder. xii, 421 pp.
Weidner, H. and Wagner, W. (1968) Die entomologischen Sammlungen des Zoologischen Staatsinstitut und Zoologischen Museum, VII. Teil, Insecta IV. Mitteilungen aus den Hamburgischen Zoologischen Museum und Institut 65, 123-180.
Westwood, J.O. (1840) Order Homoptera Macleay. In: An introduction to the modern classification of insects; founded on the natural habits and corresponding organisation of the different families. Vol. 2. Longman, Orme, Brown, Green and Longmans, London. Pp. 414-450.
Westwood, J.O. (1842a) Illustrations of some genera belonging to the family Cicadidae. Arcana entomologica or illustrations of new, rare, and interesting insects. 1, 91-92, pl. 24.
Westwood, J.O. (1842b) Insectorum novorum centuria, auctore. Annals and Magazine of Natural History 9, 118-119.
Westwood, J.O. (1843) Descriptions of some Homopterous insects from the East Indies. Arcana entomologica or illustrations of new, rare, and interesting insects 2, 33-35, pl. 57.
Westwood, J.O., (1851) Descriptions of some new species of exotic Homopterous insects. Annals and Magazine of Natural History (2)7, 207-210.
Whalley, P.E.S. (1983) A survey of Recent and fossil cicadas (Insecta, Hemiptera-Homoptera) in Britain. Bulletin of the British Museum of Natural History (Geology)37, 139-147.
White, A. (1845) Descriptions and figures of four new species of Australian insects. In: Eyre, E.J., Journals of expeditions of discovery into Central Australia, and overland from Adelaide to King George's Sound in the years 1840-1; sent by the colonists of South Australia, with the sanction and support of the Government: including an account of the manners and customs of the aborigines and the state of their relations with Europeans. Vol. I. Appendix D. Pp. 432-434, pl. 4.
White, A. (1846) Descriptions of some apparently new species of Homopterous insects in the collection of the British Museum. Annals and Magazine of Natural History 17, 330-333.
Wise, K.A.J. (1977) A synonymic checklist of the Hexapoda of the New Zealand sub-region. The smaller orders. Bulletin of the Auckland Institute and Museum 11, 1-176. [Cicadas pp. 71-76.]
Woodward, T.E., Evans, J.W. and Eastop, V.F. (1970) Chapter 26, Hemiptera (bugs, leafhoppers, etc.). In: Insects of Australia. Melbourne University Press, Clayton, pp. 387-457, pl. 3.
Wootton, R. (1971) The evolution of Cicadoidea (Homoptera). Proceedings of the 13th International Congress of Entomology, 1, 318-319.
Wu, C.F. (1935) Order XV. Homoptera. In: Catalogus insectorum sinensium. (Catalogue of Chinese insects.) 2, 1-124.
Young, D. (1972) Analysis of songs of some Australian cicadas (Homoptera: Cicadidae). Journal of the Australian Entomological Society 11, 237-243.
Young, D. (1973) Sound production in cicadas. Australian Natural History, 17(11), 375-380.
Young, D. (1975) Chordotonal organs associated with the sound apparatus of cicadas (Insecta, Homoptera). Zeitschrift für Morphologie der Tiere, 81(2), 111-136.
Young, D. and Josephson, R.K. (1983) Mechanisms of sound-production and muscle contraction kinetics in cicadas. Journal of Comparative Physiology, 152, 183-195.
Zeuner, F.E. (1944) Notes on Eocene Homoptera from the Isle of Mull, Scotland. Annals and Magazine of Natural History (11)11, 110-117.

SYSTEMATIC INDEX

aaede, Cicadetta 74
aaede, Yoyetta 24, 237
abbreviata, Cicada 190, 219
abbreviata, Melampsalta 190, 219
abdominalis, Cicadetta 74
abdominalis, Yoyetta 24, 237
Abricta 7, 46
adamsi, Gudanga 23, 119, 121
adela, Tryella 23, 229
adelaida, Cicadetta 17, 20, 74
adelaida, Clinopsalta 24, 42,78, 79
adelaida, Melampsalta 78
Adelia 20, 23, 32, 46-48, 95
adipata, Acrilla 222
adipata, Thaumastopsaltria 222
adonis, Psaltoda 22, 192, 194
aktites, Pauropsalta 23, 176
albofasciata, Burbunga 22, 28, 62
Aleeta 7, 23, 32, 49-50, 231
Anapsaltoda 22, 27, 51-52, 158, 194
angularis, Cicada 144
angularis, Macrotristria 22, 144, 145, 146
angusta, Kikihia 135
annulata, Pauropsalta 23, 176
antennetta, Psaltoda 22, 192, 194
apicans, Kobonga 18, 20, 24, 137, 139
apicata, Cicadetta 17, 20, 74
apicata, Kobonga 24, 137, 139
aquila, Pauropsalta 23, 176
arenaria, Cicadetta 74
arenaria, Melampsalta 204
arenaria, Sylphoides 24, 34, 44, 45, 204, 205
Arenopsaltria 22, 27, 28, 30, 53-55
argentata, Tettigettalna 14, 18, 20
Arunta 22, 28, 55-57, 226
aterrima, Burbunga 22, 62
aterrima, Macrotristria 144
atkinsoni, Oxypleura 165
atrata, Myopsalta 151, 154
atrata, Myopsalta 24, 162
atrata, Notopsalta 16, 18, 19, 21, 162
auranti, Gagatopsalta 18, 20, 24, 108, 109
aurata, Abricta 95
aurata, Cicada 95
auratus, Tibicen 95
aurea, Gudanga 23, 119
auriculate, Diceropyga 90
aurita, Diceropyga 90
aurora, Psaltoda 22, 192
Auscala 24, 42, 57-59
australasiae, Cyclochila 22, 83, 84, 85
australasiae, Tettigonia 83
australensis, Illyria 22, 130
ayrensis, Pauropsalta 23, 176
bacanensis, Diceropyga 90
Baeturia 7, 59
basalis, Nanopsalta 23, 34, 36, 154, 155, 156, 178
basalis, Oxypleura 165
basalis, Pauropsalta 154, 178
basiflamma, Cicada 115
bellatrix, Cicadetta 17, 20
bellatrix, Pauropsalta 178, 182
bellatrix, Physeema 24, 178, 179, 182
bicornis, Diceropyga 90
bihamata, Diceropyga 90
bindalia, Macrotristria 13, 22, 144
binotata, Cicadetta 16, 17, 21, 74
binotata, Myopsalta 24, 151
Birrima 24, 40, 43, 46, 59-61, 206
bolloni, Graminitigrina 23, 117
borealis, Abricta 17, 19, 20, 46, 47
borealis, Adelia 23, 32, 46, 50
borealis, Pauropsalta 23, 176
bougainvillensis, Diceropyga 90
boulayi, Gudanga 17, 20, 23, 119, 120
bowensis, Graminitigrina 23, 117, 118, 119
brachypennis, Psaltoda 22, 192
brendelli, Lembeja 139
brevis, Cicadetta 17, 21, 74
brevis, Ewartia 25, 44, 45, 103, 105
browni, Gudanga 23, 119
bufo, Oxypleura 165
Burbunga 22, 27, 28, 62-64, 131, 176
Burbungini 5, 22, 25, 26, 176
burgessi, Abricta 46, 211
burgessi, Tamasa 22, 209, 211
burkei, Illyria 22, 130, 131, 132,
burkei, Tibicen 130
burnsi, Tryella 23, 229
Caliginopsalta 7, 14, 19, 20, 24, 40, 64-67, 179
calypso, Oxypleura 21, 28, 165, 166
canescens, Oxypleura 165
capistrata, Cicadetta 74, 212
capistrata, Melampsalta 212
carnarvonensis, Graminitigrina 23, 117
castanea, Birrima 24, 60, 61, 62
castanea, Cicadetta 62
castanea, Melampsalta 59, 60
castanea, Pauropsalta 13
castanea, Tryella 23, 229
cauta, Kikihia 135
celis, Cicadetta 74, 237
celis, Yoyetta 24, 237, 238, 239
centralis, Oxypleura 165
cervina, Oxypleura 165
ceuthoviridis, Pipilopsalta 18, 20, 24, 40, 76, 184, 185
Chelapsalta 20, 24, 38, 43, 44, 45, 46, 67-69
chinae, Guineapsaltria 123
Chlorocysta 25, 69-71, 117
Chlorocystini 5, 25, 26, 71, 126, 224, 237
Chrysocicada 7, 23, 32, 71-73
Cicada 6

Cicadetta 5, 7, 14, 19, 73-75, 148, 149, 176
Cicadettinae 5, 11, 12, 23, 25, 26
Cicadettini 5, 14, 21, 23, 26, 75, 122, 136, 148, 162, 200
Cicadidae 5, 6, 21, 25, 27, 86, 90, 137, 199
Cicadinae 5, 8, 9, 10, 12, 21, 25, 27
Cicadini 5, 21, 22, 26, 83, 84, 207, 220
Cicadoidea 21, 25, 26, 83, 84, 207, 220
ciliata, Tettigarcta 21, 220
cincta, Abricta 46, 95
cincta, Cicada 95
cincta, Diemeniana 18, 20, 23, 92, 95
cincta, Tettigonia 95
cinctus, Tibicen 95
circumdata, Palapsalta 23, 167, 169, 178
circumdata, Pauropsalta 169, 178
clara, Oxypleura 165
claripennis, Psaltoda 22, 192
Clinata 21, 24, 34, 36, 76-78, 227
Clinopsalta 20, 24, 38, 42, 78-80, 112
coleoptrata, Cicada 92
collina, Pauropsalta 23, 176
colorata, Thopha 22, 224
connexa, Cicada 115
conspersa, Quintilia 199
convergens, Cicadetta 15, 17, 19, 20, 74
convergens, Physeema 24, 38, 179, 180
convicta, Kikihia 23, 43, 45, 135, 137
corticina, Pauropsalta 23, 176
Cosmopsaltriina 22, 26
crassa, Lembeja 139
crassa, Neopsaltoda 12, 22, 156, 157
crassa, Tryella 23, 229
crepitum, Drymopsalta 18, 19, 21, 24, 98, 99
crinita, Tettigarcta 11, 219, 220, 221
Crotopsalta 7, 19, 21, 24, 36, 43, 45, 80-82
crucifera, Cicadetta 15, 17, 21, 74
crucifera, Melampsalta 151
crucifera, Myopsalta 24, 151, 152, 153, 154
cruentata, Rhodopsalta 18, 20
Cryptotympanini 22, 26
cuensis, Cicadetta 17, 21, 74
cuensis, Ewartia 25, 76, 103, 105
curvicosta, Abricta 46
curvicosta, Aleeta 11, 23, 32, 49, 50
curvicosta, Cicada 49
cutora, Kikihia 135
Cyclochila 22, 28, 83-85
Cyclochilini 5, 22, 26, 84
Cystopsaltria 25, 30, 84, 85-86, 88, 90, 224
Cystosoma 6, 25, 30, 86, 88-90, 224
daemeli, Drymopsalta 18, 21, 24, 98, 100
daemeli, Urabunana 100
dahli, Gymnotympana 124
damater, Cicada 115
damater, Melampsalta 115
danielsi, Henicopsaltria 22, 128
dekkeri, Lembeja 139
denisoni, Cicadetta 74
denisoni, Yoyetta 24, 237
Diceropyga 22, 30, 90-92
didyma, Diceropyga 90
Diemeniana 19, 20, 23, 32, 92-95
Dipsopsalta 20, 24, 36, 95-98, 151, 170, 186
distanti, Lembeja 139
doddi, Macrotristria 22, 144
doddi, Tamasa 22, 209, 210, 211
dolens, Pauropsalta 23, 176
dorsalis, Macrotristria 22, 144
douglasi, Macrotristria 22, 144
Drymopsalta 7, 14, 21, 24, 36, 42, 44, 46, 98-100
dubia, Pauropsalta 14, 16, 18, 21, 178, 186
dubia, Platypsalta 24, 178, 186, 188, 189
dugdalei, Kikihia 135
elgneri, Pauropsalta 23, 176
elongata, Lembeja 139
emma, Mugadina 149, 178
emma, Pauropsalta 178
emma, Urabunana 14, 18, 20, 24
emmotti, Thopha 22, 224
encaustica, Pauropsalta 23, 176
Erempsalta 20, 24, 32, 38, 40, 100-103
ethiopiensis, Oxypleura 165
euronotiana, Abricta 95
euronotiana, Diemeniana 18, 20, 23, 92, 95
Ewartia 21, 25, 36, 40, 43, 44, 45, 103-105
exaequata, Pauropsalta 176
extensa, Pauropsalta 23, 176
extrema, Macrotristria 22, 144
extrema, Pauropsalta 23, 176
exulis, Kikihia 135
eydouxii, Cicada 128
eydouxii, Henicopsaltria 22, 53, 128, 129, 130
eyrei, Melampsalta 167
eyrei, Palapsalta 23, 167, 168, 178
eyrei, Pauropsalta 169, 178
fatiloqua, Lembeja 139
festiva, Mugadina 24, 149, 151, 231
festiva, Urabunana 14, 18, 20, 231
Fijipsalta 200
flava, Baeturia 59
flava, Guineapsaltria 25, 122, 123
flava, Tibicen 122
flaveola, Guineapsaltria 123
flavescens, Psaltoda 22, 192
foliata, Lembeja 139
forresti, Cicadetta 74, 212
forresti, Melampsalta 211, 212
forresti, Taurella 24, 211, 212, 213
franceaustralae, Chrysocicada 23, 32, 71, 72, 73
frenchi, Diemeniana 18, 20, 23, 92, 94, 95
frenchi, Macrotristria 22, 144
froggatti, Cicadetta 74, 214
froggatti, Kobonga 15, 18, 19, 20, 24, 137, 139
froggatti, Melampsalta 214
froggatti, Taurella 24, 211, 214
Froggattoides 14, 19, 21, 24, 40, 105-108
fronsecetes, Crotopsalta 18, 21, 24, 80
fruhstorferi, Lembeja 139
fullo, Arenopsaltria 22, 53, 54
fullo, Fidicina 53
fulva, Cicadetta 62, 74
fulva, Melampsalta 62
fumea, Chlorocysta 25, 69
fumipennis, Psaltoda 22, 192
fuscata, Pauropsalta 23, 176
fuscomarginata, Kobonga 18, 20, 24, 137
Gagatopsalta 7, 14, 19, 20, 24, 43, 44, 45, 108-110
Galanga 19, 20, 24, 38, 110-112
geisha, Cicadetta 179
geisha, Melampsalta 179
Gelidea 20, 24, 32, 38, 112-115
gilmorei, Burbunga 22, 62, 63
gilmorei, Tibicen 62
glauca, Thaumastopsaltria 222
Glaucopsaltria 25, 30, 71, 115-117
globosa, Thaumastopsaltria 25, 30, 222, 223
godingi, Kobonga 18, 20, 24, 137
godingi, Macrotristria 22, 144
graminea, Tryella 23, 229, 231
graminis, Cicadetta 74
graminis, Melampsalta 158
graminis, Neopunia 23, 34, 158, 159
Graminitigrina 7, 23, 34, 36, 117-119, 151, 170
gravesteini, Diceropyga 90
guadalcanalensis, Diceropyga 90
Gudanga 17, 23, 34, 119-121
Guineapsaltria 7, 25, 32, 121-123
guttulata, Yanga 186
Gymnotympana 7, 25, 32, 123-126, 237
hackeri, Cicadetta 16, 17, 19, 20, 74
hackeri, Melampsalta 214
hackeri, Telmapsalta 24, 43, 44, 45, 214, 215, 216
harderi, Lembeja 139
harrisii, Psaltoda 22, 192
Heliopsalta 20, 24, 28, 30, 44, 46, 126-128
Hemidictya 7
Henicopsaltria 22, 28, 128-130
hermannsburgensis, Cicadetta 17, 20, 21, 74, 103
hermannsburgensis, Erempsalta 24, 76, 100, 101, 103
hermannsburgensis, Melampsalta 101, 103
hieroglyphicalis, Macrotristria 22, 144
hilli, Illyria 22, 130
hillieri, Burbunga 22, 62, 64, 176
hillieri, Macrotristria 64, 144
hillieri, Parnquila 22, 174, 176
hirsuta, Diemeniana 18, 20, 23, 92
hirsuta, Gymnotympana 124
hollowayi, Lembeja 139
horologium, Kikihia 135
hunterorum, Cicadetta 74
hunterorum, Yoyetta 24, 237
hutchinsoni, Thopha 22, 224
Illyria 7, 22, 28, 130-132
immaculata, Cystopsaltria 25, 86, 87
incepta, Cicadetta 74
incepta, Yoyetta 24, 237
incipiens, Cicada 190
incipiens, Cicadetta 17, 20, 74, 190
incipiens, Melampsalta 190
incipiens, Pauropsalta 190
incipiens, Plerapsalta 24, 189, 190
incisa, Lembeja 141
infans, Cicada 218
infans, Quintilia 18, 19, 20, 199, 219
infans, Terepsalta 24, 34, 199, 216, 217, 218, 219
infans, Tibicen 219
infrasila, Pauropsalta 23, 176
infuscata, Pauropsalta 23, 176
infuscata, Tryella 23, 229
inornata, Burbunga 22, 62
insignis, Owra 25, 30, 163, 164
insularis, Psaltoda 22, 192
interclusa, Arunta 22, 55
intersecta, Macrotristria 22, 144, 146
issoides, Cicadetta 15, 17, 21, 74
issoides, Melampsalta 160
issoides, Noongara 24, 32, 38, 160, 161
Jassopsaltria 22, 30, 133-135
Jassopsaltriini 5, 22, 26, 135
johanae, Pauropsalta 176
judithae, Pauropsalta 176
juncta, Cicada 75, 76
juncta, Cicadetta 74, 75
juncta, Melampsalta 75
junctivitta, Diceropyga 90
kabikabia, Macrotristria 22, 144
kalgoorliensis, Gudanga 23, 119
karumbae, Graminitigrina 23, 117, 119
kauma, Tryella 23, 229
kelsalli, Henicopsaltria 22, 128
Kikihia 23, 43, 45, 46, 135-137, 206
Kobonga 19, 20, 24, 32, 40, 42, 112, 137-139, 206
kulungura, Macrotristria 22, 144
labeculata, Cicadetta 17, 20, 74
labeculata, Galanga 24, 38, 110, 111
labeculata, Melampsalta 110
labyrinthica, Cicadetta 17, 20, 74
labyrinthica, Physeema 24, 179
lachlani, Macrotristria 22, 144
lachlani, Tryella 23, 229, 231
lactea, Cicadetta 16, 17, 21, 74
lactea, Myopsalta 24, 151, 152
lanceola, Thaumastopsaltria 222
landsboroughi, Cicadetta 74
landsboroughi, Yoyetta 24, 237
laneorum, Kikihia 135
langeraki, Gymnotympana 124
Larrakeeya 106
latorea, Cicadetta 17, 19, 20, 74
latorea, Physeema 24, 179
leichardti, Melampsalta 169, 170, 172
leichardti, Paradina 24, 36, 38, 169, 170, 171, 172, 231
leichardti, Pauropsalta 170
leichardti, Urabunana 18, 19, 20, 170, 172, 231
Lembeja 23, 32, 139-141
leptotigris, Crotopsalta 18, 21, 24, 80, 81
Limnopsalta 19, 20, 24, 43, 45, 141-144
lineatella, Oxypleura 165
lineola, Melampsalta 98
lineola, Pauropsalta 98, 178
longipennis, Urabunana 231, 233
longipennis, Uradolichos 23, 34, 231, 233, 234
longula, Kikihia 135
maccallumi, Psaltoda 22, 192
mackinlayi, Cicadetta 17, 21, 74
mackinlayi, Myopsalta 24, 151
Macrotristria 7, 22, 27, 28, 64, 144-146
maculicollis, Macrotristria 22, 144
maculosa, Lembeja 140, 141
maculosa, Perissoneura 139
madegassa, Macrotristria 144
magna, Parnkalla 30, 172, 174
magna, Parnquila 22, 172, 174, 175
magnifica, Psaltoda 22, 192
major, Diceropyga 90
major, Illyria 22, 130
majuscula, Lembeja 141
malaitensis, Diceropyga 90
Mardalana 24, 69
marshalli, Mugadina 24, 149, 150, 151, 231
marshalli, Urabunana 14, 18, 20, 149, 231
Marteena 7, 14, 23, 34, 146-148
Melampsalta 7, 75, 148-149, 176
melanopygia, Pauropsalta 23, 176
melete, Cicada 197
melete, Cicadetta 17, 20, 74
melete, Pyropsalta 24, 42, 44, 45, 197, 198, 199
membrana, Gymnotypana 124
Meuniera 220
mimica, Pauropsalta 176
minahassae, Lembeja 141
minima, Cicadetta 74
minima, Pauropsalta 195
minima, Punia 23, 195, 196, 197
minoramembrana, Gymnotypana 124
Mirabilopsaltria 224
mirandae, Lembeja 141
mixta, Cicadetta 17, 21, 74
mixta, Pauropsalta 14
mixta, Platypsalta 24, 186, 189
mneme, Cicada 176
mneme, Pauropsalta 23, 176, 177
moerens, Cicada 192
moerens, Psaltoda 22, 192, 193
montana, Cicada 73
montana, Cicadetta 75
montana, Gymnotypana 124
montivaga, Tosena 84
montrouzieri, Birrima 59, 60
montrouzieri, Cicadetta 60
mossi, Psaltoda 22, 192
muelleri, Parnkalla 22, 30, 172, 173, 174
muelleri, Tibicen 172
Mugadina 20, 32, 34, 36, 38, 40, 43, 45, 96, 119, 149-151, 170, 186
multifascia, Cicada 189, 192
multifascia, Cicadetta 17, 20, 74, 192
multifascia, Melampsalta 192
multifascia, Pauropsalta 192
multifascia, Plerapsalta 24, 42, 189, 190, 191
murrayensis, Cicadetta 74, 190, 192
murrayensis, Melampsalta 190
musiva var. caspica, Melampsalta 148
muta, Kikihia 135
Myopsalta 19, 21, 24, 38, 42, 43, 44, 45, 151-154
nanda, Burbunga 22, 62, 64
nanda, Macrotristria 144
Nanopsalta 23, 34, 154-156, 160, 179, 195
neboissi, Diemeniana 18, 20, 23, 92
nebulosa, Cicadetta 74, 179
nebulosa, Melampsalta 179
nebulosa, Pauropsalta 178
Neopsaltoda 22, 27, 28, 51, 156-158, 194
Neopunia 23, 34, 158-160, 195
nigravirgula, Gymnotypana 124
Nigripsalta 200
nigristriga, Pauropsalta 23, 176
nigrosignata, Burbunga 22, 62
nigrosignata, Macrotristria 144
noctua, Tryella 23, 229
nodicosta, Clinata 24, 34, 36, 76, 77, 178
nodicosta, Pauropsalta 18, 21, 76, 178
noonadani, Diceropyga 90
Noongara 21, 24, 32, 38, 160-162
Notopsalta 5, 7, 14, 19, 20, 154, 162, 206
novaebritannicae, Diceropyga 90
novaeguinae, Diceropyga 90
nubivena, Arenopsaltria 22, 53
obiensis, Gymnotypana 124
obliterans, Diceropyga 90
obscura, Gagatopsalta 18, 20, 24, 108
obscurior, Cicada 192
obtecta, Diceropyga 90
obtecta, Tettigonia 90
occidens, Tryella 23, 229
occidentalis, Abricta 46
occidentalis, Burbunga 22, 62
occidentalis, Macrotristria 144
occidentalis, Pictila 23, 30, 182, 183
occidentalis, Tibicen 182
ochra, Tryella 11, 23, 229, 230, 231
ochrina, Kikihia 135
ochrothorax, Diceropyga 90
oldfieldi, Cicadetta 17, 21, 74
oldfieldi, Ewartia 25, 36, 43, 103, 104, 105
oldfieldi, Melampsalta 103
oligorhanta, Lembeja 141
olivacea, Gymnotypana 124
olivei, Talcopsaltria 21, 28, 206, 207, 208, 209
opaca, Pauropsalta 23, 176
Owra 25, 30, 163-164
oxleyi, Kobonga 18, 20, 24, 137, 139
Oxypleura 21, 28, 165-167
Palapsalta 23, 40, 43, 44, 45, 167-169, 179
pallida, Guineapsaltria 123
pallidula, Guineapsaltria 123
pallidus, Froggattoides 18, 21, 24, 106, 108
papuensis, Lembeja 141
Paradina 20, 24, 36, 38, 151, 169-172
paradoxa, Lembeja 23, 139, 141
Paragudanga 7, 119
Parnkalla 22, 30, 172-174, 211
Parnquila 22, 28, 64, 172, 174-176
parva, Burbunga 22, 62
parvula, Gymnotypana 124
Pauropsalta 5, 7, 14, 19, 23, 34, 40, 44, 45, 65, 120, 149, 156, 169, 176-179, 182
paxillulae, Kikihia 135
pectinulata, Lembeja 141
pennyi, Guineapsaltria 123
percola, Caliginopsalta 17, 19, 20, 24, 64, 66
Perissoneura 139
perulata, Arunta 10, 12, 22, 55, 56, 57
perulata, Cicada 55
phyloglycera, Gymnotypana 124
Physeema 20, 24, 38, 42, 43, 46, 112, 179-182
pictibasis, Psaltoda 22, 193
Pictila 23, 30, 182-184
Pipilopsalta 7, 14, 20, 24, 38, 40, 96, 151, 170, 184-186
plaga, Psaltoda 22, 192
Platypleura 167, 186
Platypleurini 21, 25
Platypsalta 21, 24, 36, 42, 45, 186-189
Plerapsalta 20, 24, 36, 40, 42, 44, 46, 189-192
plexis, Crotopsalta 18, 21, 25, 80, 82
pneumatica, Thaumastopsaltria 222
poaecetes, Crotopsalta 18, 21, 25, 80
polita, Cicadetta 17, 20, 74, 126
polita, Heliopsalta 24, 44, 46, 126, 127
polita, Oxypleura 165
polydorus, Oxypleura 165
Polyneura 6
Prasiini 5, 23, 26
prolongata, Pauropsalta 23, 176
Psaltoda 22, 27, 28, 51, 158, 192-194
pterolongata, Gudanga 23, 119
puer, Chelapsalta 24, 38, 43, 44, 45, 67, 68, 69, 204
puer, Cicada 67
puer, Cicadetta 18, 20, 21, 74
pulchra, Anapsaltoda 22
pulchra, Psaltoda 51
Punia 23, 34, 158, 160, 195-197
Pycna 84
pygmaea, Arenopsaltria 22
Pyropsalta 20, 24, 42, 44, 45, 197-199
quadraticollis, Oxypleura 165
quadricincta, Cicada 179
quadricincta, Cicadetta 18, 20, 74
quadricincta, Physeema 24, 179, 180, 181
queenslandica, Burbunga 22, 62, 63
Quintilia 5, 19, 73, 199, 218
rainbowi, Tamasa 22, 209
rennellensis, Diceropyga 90
Rhodopsalta 14, 19, 20
richesi, Diemeniana 95
robusta, Lembeja 141
roehli, Lembeja 141
rosea, Kikihia 135
rubea, Cicadetta 179
rubea, Melampsalta 179
rubea, Pauropsalta 23, 176, 178, 179
rubra, Pauropsalta 13, 23, 176, 179
rubra, Tryella 23, 229
rubricata, Gymnotympana 124
rubricincta, Marteena
rubricinctus, Tibicen 146
rubristrigata, Pauropsalta 23, 176
rufa, Baeturia 59
rufa, Gymnotympana 25, 124, 125, 237
rufifacies, Jassopsaltria 23, 133, 134
rufifascia, Pauropsalta 176
rufivelum, Henicopsaltria 22, 128, 129, 130
rufiventris, Cicada 199
rufiventris, Quintilia 199
saccata, Tettigonia 224
saccata, Thopha 22, 224, 225, 226
Samaecicada 7, 23, 40, 199-201
sancta, Cicadetta 18, 20, 21, 74, 204
sancta, Melampsalta 202, 204
sancta, Simona 24, 44, 46, 69, 202, 203, 204
sangihensis, Lembeja 141
sanguinolenta, Lembeja 141
sarissa, Thaumastopsaltria 222
saundersii, Cystosoma 6, 25, 88, 89, 90
schmeltzi, Cystosoma 25, 88
scutellaris, Kikihia 135
segmentaria, Urabunana 170, 231
sericea, Cicada 162
sericea, Notopsalta 18, 20, 162
sericeivitta, Cicada 231
sericeivitta, Urabunana 24, 231, 232
sessiliba, Thopha 22, 224
siccana, Pauropsalta 23, 176
sicula, Thaumastopsaltria 222
signata, Dipsopsalta 24, 36, 95, 97, 98, 178
signata, Melampsalta 98
signata, Pauropsalta 14, 18, 19, 20, 95, 97, 98, 178
Simona 20, 24, 44, 46, 202-204
singula, Cicada 192
singula, Cicadetta 74, 192
singula, Melampsalta 192
solata, Gudanga 23, 119
spelunca, Thaumastopsaltria 222
spinosa, Auscala 24, 42, 57, 58, 59
spinosa, Cicadetta 18, 19, 20, 74, 115
spinosa, Melampsalta 57, 115
spoerryae, Oxypleura 165
spreta, Cicadetta 74
spreta, Melampsalta 115
stalkeri, Tryella 23, 229
stenocephalis, Gymnotypana 124
stigmatica, Pauropsalta 13, 23, 176
stradbrokensis, Cicadetta 18, 19, 20, 74
stradbrokensis, Limnopsalta 24, 43, 141, 143, 144
stradbrokensis, Melampsalta 141
strenulum, Crotopsalta 18, 21, 25, 80
strepitans, Cicada 124
strepitans, Gymnotympana 124, 125
stridens, Gymnotympana 124
stridula, Cicada 186
stridula, Platypleura 186
stylata, Guineapsaltria 123
subalpina, Cicada 135
subalpina, Kikihia 135, 136
subapicalis, Diceropyga 22, 30, 90, 91
subgulosa, Cicadetta 74, 202
subgulosa, Melampsalta
subjuga, Diceropyga 90
subnotata, Gymnotympana 124
subolivacea, Pauropsalta 199
subolivacea, Samaecicada 23, 40, 199, 201
suffusa, Chlorocysta 25, 69, 70
sulcata, Cicadetta 74, 214
sulcata, Melampsalta 214
sulcata, Taurella 212
superba, Venustria 25, 32, 34, 235, 236, 237
Sylphoides 24, 34, 44, 45, 204-206
sylvara, Macrotristria 22, 144, 145
Talcopsaltria 7, 21, 28, 167, 206-209
Talcopsaltriini 5, 21, 25, 207
Tamasa 22, 30, 172, 209-211
Tamasini 5, 22, 26, 176
Taphurini 5, 23, 26
Taurella 24, 40, 43, 44, 45, 169, 179, 200, 211-214
Telmapsalta 20, 24, 43, 45, 144, 214-216
tepperi, Platypleura 186
Terepsalta 19, 20, 24, 34, 216-219
Tettigarcta 13, 21, 27, 84, 219-221
Tettigarctidae 5, 11, 21, 25, 27, 220
Tettigarctinae 21
Tettigarctini 21
Tettigettalna 14, 20
Thaumastopsaltria 25, 30, 222-224
Thopha 22, 27, 28, 57, 224-226
Thophini 5, 22, 26
thophoides, Macrotristria
tigris, Cicadetta 18, 20, 75
tigris, Clinopsalta 24, 78
tillyardi, Diemeniana 95
tincta, Lembeja 141
tomentosa, Tettigarcta 21, 219, 220
toowoombae, Cicadetta 75
toowoombae, Yoyetta 24, 237
torrida, Cicada 112, 115
torrida, Cicadetta 15, 18, 19, 20, 75, 115
torrida, Gelidea 24, 32, 38, 112, 114, 115
torrida, Melampsalta 115
tortifer, Diceropyga 90
Toxala 19, 21, 24, 36, 78, 226-229
Trengganua 84
triangulata, Diceropyga 90
triodiae, Graminitigrina 23, 117
tristigma, Cicada 209
tristigma, Tamasa 8, 9, 10, 12, 22, 209, 210, 211
tristrigata, Cicadetta 75
tristrigata, Yoyetta 24, 237
Tryella 7, 23, 32, 46, 49, 229-231
Tryellina 23, 26
typicus, Froggattoides 18, 21, 24, 106, 107, 108
umbrimargo, Cicada 137
umbrimargo, Kobonga 12, 15, 18, 19, 20, 24, 137, 138
unicolor, Arenopsaltria 53
unicolor, Parnquila 22, 28, 174, 176
Urabunana 5, 14, 19, 24, 38, 231-233
Uradolichos 23, 34, 36, 96, 151, 170, 186, 233-235
varians, Birrima 24, 60
varicolor, Baeturia 59
varicolor, Gymnotympana 25, 124, 125
venosa, Burbunga 62, 176
venosa, Parnquila 22, 174, 176
Venustria 25, 30, 34, 126, 235-237
verlaani, Gymnotympana 124
verna, Curvicicada 229
verna, Toxala 24, 36, 226, 227, 228, 229, 231
verna, Urabunana 18, 21, 226, 229, 231
virens, Cyclochila 22
virgulatus, Palapsalta 23, 167, 178
virgulatus, Pauropsalta 178
viridis, Cicadetta 75
viridis, Glaucopsaltria 25, 30, 115, 116
viridis, Gymnotypana 124
viridis, Taurella 24, 76, 211, 212
viridula, Guineapsaltria 123
vitellinus, Palapsalta 23, 167, 169, 178
vitellinus, Pauropsalta 178
vitripennis, Chlorocysta 25, 69, 70, 71
vittata, Macrotristria 22, 144
vitticollis, Lembeja 23, 139, 141
walkeri, Pauropsalta 23, 176
warburtoni, Cicadetta 74, 212
warburtoni, Melampsalta 212
waterhousei, Cicadetta 16, 18, 21, 75
waterhousei, Myopsalta 24, 151, 152, 154
willsi, Tryella 23, 229, 231
wollomombii, Myopsalta 24, 151, 152, 231
wollomombii, Urabunana 16, 18, 21, 231
woodlarkensis, Diceropyga 90
worora, Macrotristria 22, 144
Yanga 84, 186
Yoyetta 24, 34, 42, 43, 44, 45, 46, 206, 237-239

PLATE 1. Figs 1 Kobonga umbrimargo, male; 2 Talcopsaltria olivei, male; 3a Clinopsalta adelaida, female; 3b Clinopsalta adelaida, male; 4 Gudanga boulayi, male; 5 Chrysocicada franceaustralae, male; 6 Erempsalta hermannsburgensis, male; 7 Pictila occidentalis, male; 8 Heliopsalta polita, male; 9a Adelia borealis, male; 9b Adelia borealis, female; 10a Parnquila magna, male; 10b Parnquila magna, female; 11 Simona sancta, male. Approximately 1.8x natural size.

PLATE 2. Figs 1 Drymopsalta crepitum, male; 2 Crotopsalta plexis, male; 3 Caliginopsalta percola, male; 4 Gagatopsalta auranti, male; 5 Chelapsalta puer, male; 6 Neopunia graminis, male; 7 Graminitigrina bowensis, male; 8 Platypsalta dubia, male; 9 Pipilopsalta ceuthoviridis, male; 10 Noongara issoides, male; 11a Terepsalta infans, male; 11b Terepsalta infans, female; 12a Uradolichos longipennis, male; 12b Uradolichos longipennis, female; 13a Paradina leichardti, male; 13b Paradina leichardti, female; 14 Samaecicada subolivacea, male; 15 Dipsopsalta signata, female; 16a Clinata nodicosta, male; 16b Clinata nodicosta, female; 17 Plerapsalta multifascia, male. Approximately twice natural size.

[^0]: 1. Usually a relaxed specimen will suffice. If dissection is deemed necessary proceed as follows: (1) from a relaxed specimen gently ease pygofer from abdomen by cutting outer segmental membrane with a sharp pin; (2) place dissected pygofer in 10% - potassium hydroxide overnight at room temperature: (3) transfer to water to rinse, changing water 2-3 times; (4) in a Petri dish of water or 75% ethanol, clean any debris from specimen and examine; (5) after examination store in 75% ethanol.
[^1]: Melampsalta castanea Goding and Froggatt, 1904: 637-638
 Birrima montrouzieri Distant, 1906a: 388-389
 Cicadetta montrouzieri (Distant): Kirkaldy, 1907a: 16
 Birrima castanea (Goding and Froggatt): Burns, 1957: 667

[^2]: Guineapsaltria de Boer, 1993a: 15-23; de Boer, 1995b: 204, 210, 211, 214, 215, 216, 217, 218, 219; de Boer, 1995c: 2, 3, 5, 6; de Boer, 1995d: 208-209, 217, 218, 219, 222, 224, 225, 233; de Boer, 1996: 351, 352, 356, 358; de Boer and Duffels, 1996a: 155, 167, 168, 170, 171, 172; de Boer and Duffels, 1996b: 301, 304, 306, 313, 314; de Boer, 1997: 92, 93, 94, 98; Moulds, 2005a: 390, 430, 435.

