

http://dx.doi.org/10.11646/phytotaxa.173.2.3

Phylogenetic relationships of *Discyphus scopulariae* (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae

GERARDO A. SALAZAR¹, CÁSSIO VAN DEN BERG² & ALEX POPOVKIN³

¹Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: gasc@ib.unam.mx

²Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil

³Fazenda Rio do Negro, Entre Rios, Bahia, Brazil

Abstract

The monospecific genus *Discyphus*, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of *Discyphus* have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony and maximum likelihood criteria with the aim of clarifying its systematic position and discussing its peculiar morphology in an explicit phylogenetic context. Our analyses failed to support inclusion of *Discyphus* in Spiranthinae, signifying instead that this genus represents an additional isolated lineage of "core spiranthids." The notable morphological disparity among such major lineages, as compared with the short internal branches subtending them in the molecular trees, would support the hypothesis that *Discyphus* represents a relict from an early radiation that also gave rise to Cranichidinae and Spiranthinae, putatively driven by adaptation to different pollinators given the morphological differences in floral morphology among these taxa.

Key words: ITS nrDNA, matK-trnK, Neotropical orchid phylogenetics, Orchidoiodeae, rbcL, Spiranthinae, trnL-trnF

Introduction

The genus Discyphus Schlechter (1919: 417) was created to include a single species formerly described as Spiranthes scopulariae Reichenbach (1854a: 11) and included in subtribe Spiranthinae Lindley (1840: 441) by Schlechter (1920), Balogh (1982), Garay (1982), Szlachetko (1992, 1995), Chase et al. (2003) and Salazar (2003b). However, Discyphus displays several vegetative and floral morphological peculiarities that cast doubts on its subtribal placement. Discyphus scopulariae (Reichenbach 1854a: 11) Schlechter (1919: 417) stands out vegetatively because of its single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate (Fig. 1A, B, D). In contrast, most genera of Spiranthinae bear one or more leaves that are petiolate or at least attenuate towards the base, thus never clasping the base of the scape. The only other genus of Spiranthinae with similar leaves is Nothostele Garay (1982: 339), which includes two species restricted to the Brazilian Plateau. In the latter, plants produce one or two sessile, round, cordate leaves that lie on the substrate, but the inflorescence and leaves are produced at different times of the year; therefore, a leaf base clasping the scape is impossible (Batista et al. 2011). Furthermore, in Discyphus the petals are free from the dorsal sepal, but their proximal half is decurrent on the column; in addition, the margins of the labellum are free, whereas in the typical Spiranthinae the petals are adherent to the dorsal sepal, their bases are free from the column and the margins of the labellum are fused to the sides of the column to form a tube leading to the nectary (Garay 1982; Salazar 2003b). Moreover, the column of Discyphus has two separate, cup-shaped stigmatic areas (Figs. 1E, 2H), a condition unique among Spiranthinae or of any other genus in Cranichideae Pfeiffer (1874: 901). In Cranichideae, the stigma is usually entire, or, in the few instances when it has two receptive areas, these are never

cup-shaped but flat or with slightly convex lateral surfaces, as in some Cranichidinae Lindley (1840: 441) *s.l.*, such as *Galeoglossum* Richard & Galeotti (1845: 31; Salazar 2009; Salazar *et al.* 2011b), and Goodyerinae Ridley (1907: 12), e.g. in *Anoectochilus* Blume (1825: 411), *Cheirostylis* Blume (1825: 413) and *Hetaeria* Blume (1825: 409; Szlachetko & Rutkowski 2000, Ormerod & Cribb 2003). In those representatives of Spiranthinae in which the stigmatic surface is conspicuously bilobed, such as in *Sauroglossum elatum* Lindley (1840: 480), the receptive stigmatic areas are at least partially confluent, flat and without raised margins (Singer 2002, Salazar 2003b).

FIGURE 1. *Discyphus scopulariae.* **A.** Flowering plant in situ (Bahia, Brazil, *Popovkin 338A*). **B**–**E**. Another flowering plant removed from soil (Bahia, Brazil, *Popovkin 900*). **C.** Inflorescence. **D**. Roots and leaf from below. **E**. Close-up of the column apex from below with the pollinarium removed, showing the bifid rostellum remnant and the two stigmatic areas with pollinium fragments presumably deposited by an unrecorded pollinator. Photographers: Alex Popovkin (**A**–**D**), Isys Souza (**E**).

By virtue of its morphological distinctness, and because the genus remained unavailable for molecular phylogenetic analysis, the phylogenetic relationships of *Discyphus* have been regarded as obscure (Salazar 2003b). A recent rediscovery by the third author of several populations on the northern coast of Bahia, Brazil (*Popovkin 338A*, 900, 901, 1516, HUEFS), made such phylogenetic study a possibility.

In this paper, we assess the systematic position of *Discyphus*, analysing nucleotide sequences of plastid and nuclear DNA in a phylogenetic framework. The plastid sequences analysed were *rbcL* (Chase & Albert 1998), *matK* plus partial *trnK* intron (in which *matK* is embedded; Hilu & Liang 1997) and the *trnL-trnF* region (consisting of the *trnL* intron and the *trnL-trnF* intergenic spacer, or IGS, plus short exon portions; Taberlet *et al.* 1991). The nuclear region analysed was the internal transcribed spacer region of the nuclear ribosomal DNA (nrITS; Baldwin *et al.* 1995). All these DNA regions have been used previously to infer phylogenetic relationships in Spiranthinae (Salazar *et al.*

2003, 2011a; Górniak *et al.* 2006; Salazar & Ballesteros-Barrera 2010; Batista *et al.* 2011; Salazar & Dressler 2011; Salazar & Jost 2012), other Cranichideae (Figueroa *et al.* 2008; Álvarez-Molina & Cameron 2009; Salazar *et al.* 2009, 2011b; Cisternas *et al.* 2012) and many other orchid clades (review in Cameron 2007). We were particularly interested in clarifying the relationships of *Discyphus* to other Spiranthinae and discussing its morphological peculiarities in light of its inferred phylogenetic position.

FIGURE 2. *Discyphus scopulariae* (from *Coelho de Moraes 2171*). **A.** Habit. **B.** Flower. **C.** Flower opened out between dorsal sepal and one lateral sepal. **D.** Dorsal sepal. **E.** Lateral sepal. **F.** Petal. **G.** Labellum. **H.** Column, ventral view. **I.** Column apex, side view. Single bar = 1 mm, double bar = 1 cm. Drawn by Judi Stone and originally published in Pridgeon *et al.* 2003: Fig. 181.1 (reproduced with permission).

Materials and methods

Taxa analyzed:—We analyzed samples of 52 species and 51 genera (Table 1); of these, 24 belong to subtribe Spiranthinae *sensu* Salazar (2003b), and 22 represent all other subtribes of Cranichideae, namely Achlydosinae Clements & Jones in Jones *et al.* (2002: 439), Chloraeinae Pfitzer (1887: 98), Cranichidinae, Galeottiellinae Salazar & Chase in Salazar *et al.* (2002: 172), Goodyerinae, Manniellinae Schlechter (1926: 572) and Pterostylidinae Pfitzer (1887: 97; Kores *et al.* 2001, Salazar *et al.* 2002, 2003, 2009). Our choice of taxa was designed to maximize coverage of genera of Spiranthinae, as far as availability of material permitted. We also included four members of Diurideae (Lindley 1840: 443) Endlicher (1842: 21), a tribe that several molecular phylogenetic analyses have shown to be the sister of Cranichideae (Kores *et al.* 2001, Clements *et al.* 2002, Chase *et al.* 2003, Salazar *et al.*, 2003, 2009, Álvarez-Molina & Cameron 2009, Cisternas *et al.* 2012) and used *Ophrys apifera* Hudson (1762: 340) of tribe Orchideae (Dressler & Dodson, 1960: 35) as a functional outgroup.

Molecular methods:—DNA extraction, amplification, and sequencing were carried out using standard methods and primers described in Salazar *et al.* (2003, 2011a). In all instances, bidirectional sequencing was performed, and the chromatograms were edited and assembled with Sequencher (GeneCodes Corp.). Alignment of *rbcL* was simple because of lack of insertion/deletion (indel) events, but all the other regions were aligned using default settings of the online implementation of the program MAFFT v. 7 (Kato & Standley 2013; http://mafft.cbrc.jp/alignment/server/), with minor visual adjustments. Individual indel positions were treated as missing data. The aligned matrix in the Nexus format is available on request from gasc@ib.unam.mx. Sequences for the newly sequenced species have been deposited in GenBank (Table 1).

Phylogenetic analyses:—Our previous phylogenetic analyses of Spiranthinae and Cranichideae were based on the same markers used here (e.g. Salazar *et al.* 2003, 2009, Cisternas *et al.* 2012) and did not find conflicting groups among the separate analyses supported by high bootstrap percentages; moreover, both resolution and overall clade support increased when all data were combined. We therefore opted to analyse all data in combination. We used two phylogenetic methods, namely maximum parsimony (MP) and maximum likelihood (ML), with the aim of comparing results recovered by a method based on explicit models of nucleotide substitution (ML) with another that was not (MP). This approach allowed us to check for possible analytical artefacts, such as "long-branch attraction," which could mislead MP when different lineages on the tree have dissimilar branch lengths (Felsenstein 1978, Huelsenbeck 1997, Bergsten 2005); there are indeed branch-length inequalities among different species and groups of Spiranthinae as our previous analyses have shown (Salazar & Dressler 2011, Salazar & Jost 2012).

The MP analysis was conducted with the program PAUP* version 4.02b (Swofford 2002) and consisted of a heuristic search with 1000 replicates of random addition of sequences, branch-swapping by "tree bisection-reconnection" (TBR), and the option "MULTREES" (to save multiple trees) activated, saving in memory all most-parsimonious trees (MPTs) found. All characters were treated as unordered and equally weighted. Internal support for clades was assessed by 1000 bootstrap replicates (Felsenstein 1985), each consisting of a heuristic search with 20 random-sequence addition of taxa for the starting trees and the TBR branch-swapping, saving up to 20 MPTs per replicate.

The ML analysis was done with the program RAxML-HPC2 version 7.4.2 (Stamatakis 2006), as implemented in the Cyberinfrastructure for Phylogenetic Research (CIPRES) Portal 2.0 (Miller *et al.* 2010). Analysis of 1000 rapid bootstrap replicates (Stamatakis *et al.* 2008) was followed by a search for the tree that maximizes the likelihood function, with the default value of 25 rate categories and estimation of all free model parameters for seven character partitions: first/second codon positions of *rbcL*, third codon positions of *rbcL*, *matK*, *trnK* intron, ITS region, *trnL* intron and *trnL-trnF* IGS. Both the bootstrap searches and the search for the ML tree used the GTRGAMMA model for nucleotides.

TABLE 1.	Taxa studied	voucher information	and GenBank	accessions
ITTPLL I	Tunu Studiou.		und Genibulik	ucccs5510115.

Taxon	Voucher		GenBank accession		
		rbcL	trnL-	matK-	ITS
			trnF	trnK	
TRIBE CRANICHIDEAE ENDL.					
Subtribe Achlydosinae M.A.Clem. &					
D.L.Jones					
Achlydosa glandulosa (Schltr.)	New Caledonia, Clements D-285, CANB	AJ542401	AJ544506	AJ543950	AJ539525
M.A.Clem. & D.L.Jones					
			0	continued on	the next page

TABLE 1. (Continued)					
Taxon Voucher			GenBank accession		
		rbcL	trnL-	matK-	ITS
			trnF	trnK	
Subtribe Chloraeinae Rchb.f.					
Chloraea magellanica Hook.t.	Chile, <i>Ryan 1</i> , K (spirit)	AJ542403	AJ544504	AJ543948	AJ539523
Gavilea lutea (Pers.) M.N.Correa	Chile, Ryan 3, K (spirit)	AJ542402	AJ544505	AJ543949	AJ539524
Subtribe Cranichidinae Lindl.					
Aa colombiana Schltr.	Colombia, <i>Aldana 2</i> , ANDES	AM778133	AM412731	AM900802	AM419766
Altensteinia fimbriata Kunth	Ecuador, <i>Salazar 6789</i> , MEXU (spirit)	AM778132	AM412737	AM900801	AM419765
Baskervilla colombiana Garay	Colombia, <i>Niessen 5</i> , MEXU (spirit)	AM778157	AM412714	AM900826	AM419791
Cranichis muscosa Sw.	Costa Rica, <i>Pupulin 1792</i> , USJ	AM778143	AM412723	AM900812	AM419777
<i>Galeoglossum thysanochilum</i> (B.L.Rob. & Greenm.) Salazar	Mexico, Tenorio 17900, MEXU	AM778141	AM412725	AM900810	AM419775
Gomphichis caucana Schltr.	Colombia, Díaz 159, ANDES	AM778136	AM412736	AM900805	AM419770
Ponthieva guatemalensis Rchb.f.	Central America (cultivated specimen), Salazar s.n., MEXU	AM778152	AM412713	AM900821	AM419786
Porphyrostachys pilifera Rchb.f.	Peru, Whalley s.n., K (photograph)	AJ542411	AJ544496	AJ543942	AJ539514
Prescottia plantaginea Lindl.	Brazil, Salazar 6350, K (spirit)	AJ542414	AJ544493	AJ543939	AJ539511
Pterichis habenarioides Schltr.	Colombia, Aldana 12, COL	AJ542416	AJ544491	AJ543937	AJ539509
Stenoptera ecuadorana Dodson &	Ecuador, Salazar 6357, K (spirit)	AJ542413	AJ544494	AJ543940	AJ539512
C.Vargas					
Subtribe Discyphusinae Salazar & van					
den Berg					
Discyphus scopulariae (Rchb.f.) Schltr	Brazil, Popovkin 338A, UEFS	LK391733	LK391734	LK391835	LK391732
Subtribe Galeottiellinae Salazar &					
Galaattialla samaalassa (A Piah &	Maxiaa limánaz 2224 AMO	A 1542407	A 1544500	A 15/20/15	A 1520519
Galeotti) Schltr.	Mexico, <i>Junene</i> 2 2354, AMO	AJJ42407	AJ344300	AJJ43743	AJJJJJJ10
Subtribe Goodyerinae Klotzsch					
Dossinia marmorata (Lindl.) E.Morr.	Tropical Asia (cultivated specimen), Munich Bot. Gard. 94/1190, M	AJ542405	AJ544502	AJ543947	AJ539521
Goodyera pubescens (Willd.) R.Br.	USA, Chase 212, NCU	AF074174	AM419815	AJ543954	AJ539519
Ludisia discolor (Ker-Gawl.) A.Rich.	Tropical Asia (cultivated specimen), Salazar 6354, K (spirit)	AJ542395	AJ544466	AJ543911	AJ539483
Pachyplectron arifolium Schltr.	New Caledonia, Chase 529, K	AJ542404	AJ544503	AJ310051	AJ539522
Platylepis polyadenia Rchb.f.	Madagascar, Salazar 6352, K (spirit)	AJ542406	AJ544501	AJ543946	AJ539520
Subtribe Manniellinae Schltr.					
Manniella cypripedioides Salazar,	Cameroon, Salazar et al. 6323, YA	AJ542409	AJ544498	AJ543943	AJ539516
T.Franke, Zapfack & Benkeen					
Subtribe Pterostylidinae Pfitz.					
Pterostylis curta R.Br.	Australia, Chase 572, K	AJ542400	AJ544507	AJ543951	AJ539526
Subtribe Spiranthinae Lindl.					
Aulosepalum tenuiflorum (Greenm.)	Mexico, Salazar 6017, MEXU	_	-	AJ543919	_
Garay	Mexico, Salazar et al. 6150, MEXU	AJ542433	AJ544474	-	AJ539591
Beloglottis costaricensis (Rchb.f.) Schltr.	Mexico, Soto 8129, MEXU	AJ542432	AJ544475	AJ543920	AJ539492
Coccineorchis cernua (Lindl.) Garay	Panama, <i>Salazar et al. 6249</i> , MEXU (spirit)	AJ542422	AJ544485	AJ543930	AJ539502
Cyclopogon epiphyticus (Dodson) Dodson	Ecuador, Salazar 6355, K	AJ542425	AJ544482	AJ543927	AJ539499

.....continued on the next page

TABLE 1. (Continued)

Taxon	Voucher		GenBank	accession	
		rbcL	trnL-	matK-	ITS
			trnF	trnK	
Deiregyne diaphana (Lindl.) Garay	Mexico, Salazar et al. 6172, MEXU	AJ542440	AJ544467	AJ543912	AJ539484
Dichromanthus cinnabarinus (La Llave &	Mexico, Linares 4469, MEXU	AJ542438	AJ544469	AJ543914	AJ539486
Lex.) Garay					
<i>Eltroplectris calcarata</i> (Sw.) Garay & H.R.Sweet	Brazil, Soares s.n., K (photograph)	AJ519446	AJ519452	AJ519450	AJ519448
Eurystyles borealis A.H.Heller	Mexico, Soto 9149, AMO	AJ542427	AJ544480	AJ543925	AJ539497
<i>Funkiella hyemalis</i> (A.Rich. & Galeotti) Schltr.	Mexico, Salazar et al. 6128, MEXU	AJ542429	AJ544478	AJ543923	AJ539495
Lankesterella gnoma (Kraenzl.) Hoehne	Brazil, Warren s.n., K (spirit)	_	FN556168	FN556173	FN556163
Mesadenella petenensis (Standl. & L.O.Williams) Garay	Mexico, Salazar 6069, MEXU	AJ542421	AJ544486	AJ543931	AJ539503
Mesadenus lucayanus (Britt.) Schltr.	Mexico, Salazar 6043, MEXU	AJ542436	AJ544471	AJ543916	AJ539488
Nothostele acianthiformis (Rchb.f. & Warm.) Garay	Brazil, Viana 767, BHCB	-	FN868836	FN868833	FN868838
Odontorrhynchus variablis Garay	Chile, Wallace 130/85, CANB	AJ542426	AJ544481	AJ543926	AJ539498
Pelexia adnata (Sw.) Poit. ex Spreng.	Mexico, Salazar 6012, MEXU	AJ542423	AJ544484	AJ543929	AJ539501
Pteroglossa roseoalba (Rchb.f.) Salazar & M.W.Chase	El Salvador, Salazar 6023, MEXU	-	FN868837	FN868834	FN868839
Sacoila lanceolata (Aubl.) Garay	Brazil, Da Silva 874, MG	AJ542441	AJ544529	AJ543933	_
	Panama, Förther 2545, M	_	_	_	AJ539504
Sarcoglottis acaulis (J.E.Sm.) Schltr.	Trinidad, Salazar 6356, K (spirit)	AJ542424	AJ544483	AJ543928	AJ539500
Schiedeella llaveana (Lindl.) Schltr.	Mexico, Salazar 6073, MEXU	-	AJ544470	_	-
	Mexico, Salazar 6105, MEXU	AJ542437	_	AJ543915	AJ539487
Sotoa confusa (Garay) Salazar	Mexico, Hernández 3320, MEXU	_	FN641876	HE575506	FN641865
Spiranthes spiralis (L.) Cheval.	United Kingdom, Bateman s.n., K (spirit)	AJ542434	AJ544473	AJ543918	AJ539490
Stenorrhynchos glicensteinii Christenson	Mexico, Salazar 6090, MEXU	AJ542420	AJ544487	AJ543532	AJ539505
Svenkoeltzia congestiflora (L.O.Williams) Burns-Bal.	Mexico, Salazar 6143, MEXU	AJ542431	AJ544476	AJ543921	AJ539493
TRIBE DIURIDEAE ENDL.					
Subtribe Acianthinae (Lindl.) Schltr.					
Acianthus caudatus R.Br.	N.A.	_	_	_	AF347976
Acianthus exsertus R.Br.	Australia, Chase 565, K	AF074101	AJ409373	AJ309993	_
Subtribe Caladeniinae Pfitzer					
Microtis parviflora R.Br.	Australia, <i>Chase 553</i> , K Australia, <i>'MA21'</i> , CANB	AF074194 -	AJ409428 -	AJ310045 -	DQ104550
Subtribe Diuridinae Lindl.					
Diuris sulphurea R.Br.					
Subtribe Cryptostylidinae Schltr.	Australia, Chase 554, K	AJ542398	AJ544509	AJ543952	AJ539527
Cryptostylis subulata (Labill.) Rchb.f.	Australia, Chase 332, K	AF074140	AJ409395	AJ310015	AF348015
TRIBE ORCHIDEAE DRESSLER & DODSON					
Subtribe Orchidinae Dressler & Dodson					
Ophrys apifera Huds.	United Kingdom, Chase 536, K	AJ542396	AJ544511	AJ543953	AJ539529

Results

The MP analysis found 24 MPTs with a length of 6383 steps, CI (excluding uninformative characters) of 0.41 and RI of 0.60. The strict consensus of the 24 MPTs is shown in Fig 3. The maximum likelihood tree (log ML score = -40655.206328) recovered by the ML analysis is shown in Fig 4. On both trees, bootstrap percentages (BP) are indicated under the branches (in the following indicated as "MP/ML"). The MP and ML analyses recovered similar patterns of relationship, including monophyletic Cranichideae s.l. (BP 100/100), which include, in the ascending branching order, Chloraeinae (BP 100/100), [Achlydosinae-Pterostylidinae] (BP 72/98), Goodyerinae (BP 100/100) and a "core spiranthid" clade (BP 100/100) encompassing Galeottiellinae, Manniellinae and a group consisting of all the representatives of Cranichidinae s.l. and Spiranthinae (BP 99/100). Relationships within the last group differ between the MP and ML analyses only in that in the strict consensus from the MP there is a polytomy formed by Discyphus, a high-Andean clade encompassing Stenoptera Presl (1827: 95) through Aa Reichenbach (1854b: 18; clade "a" in Fig. 3), a group with [Prescottia Lindley (in Hooker 1824: 115)-Galeoglossum] sister to "core" Cranichidinae (Pterichis Lindley (1840: 444) through Ponthieva Brown (1813: 199; clade "b"), and strongly supported Spiranthinae to the exclusion of Discyphus (clade "c"; BP 100). In contrast, in the ML tree Discyphus is sister, with BP < 50, to a monophyletic but weakly supported Cranichidinae s.l. (BP \leq 50) and these, in turn, are sisters to strongly supported Spiranthinae (excluding Discyphus; BP 100; Fig. 4). In both the MP and ML analyses, relationships within Spiranthinae and the various clades of Cranichidinae match closely those found in previous molecular phylogenetic analyses (e.g. Salazar et al. 2003, 2009, 2011a, b, Álvarez-Molina & Cameron 2009, Salazar & Ballesteros-Barrera 2010, Batista et al. 2011, Salazar & Dressler 2011, Salazar & Jost 2012).

Discussion

Both our MP and ML analyses failed to provide support for inclusion of *Discyphus* in Spiranthinae but recovered the same strongly supported four clades of "core spiranthids" that have been consistently found in previous studies (Salazar et al. 2003, 2009, Álvarez-Molina & Cameron 2009; Figs. 3, 4). As in those studies, in our analyses relationships among the main clades of core spiranthids and now also Discyphus are not unequivocally resolved. Salazar et al. (2009) proposed that the lack of clear patterns of support for the relationships among these clades, in contrast with the strongly supported relationships at lower and higher levels of the phylogenetic tree, might indicate a rapid morphological differentiation or a slower local rate of molecular evolution. Likewise, Alvarez-Molina & Cameron (2009: 1036) suggested that the presence of short branches along the spine of a cladogram indicates a rapid radiation of taxa. The marked among-clade distinctness in floral morphology, as compared with the relative homogeneity within each clade, would lend support to the hypothesis of a rapid differentiation, likely fuelled by adaptation to different types of pollinators. For instance, the most obvious features distinguishing Cranichidinae s.l. (clades a + b, Figs. 3, 4) from Spiranthinae are the non-resupinate, wide-open flowers of the former, in contrast with the resupinate, tubular flowers of the latter, and both flower orientation and perianth aperture would indicate important differences in their pollination mechanisms. Pollination in Spiranthinae involves introduction of the mouthparts or the whole anterior part of the head or body of the pollinator as it probes deeply into the floral tube to access nectar (e.g. Catling 1993, Singer & Coccuci 1999, Singer & Sazima 1999, 2000, Benítez-Vieira et al. 2006, Salazar et al. 2011a, Singer 2002, Figueroa et al. 2012). In Prescottia, the only genus of Cranichidinae s.l. for which natural pollination had been studied, pollinators (pyralid moths) partially introduce their proboscis into the calceolate labellum, but there is no floral tube because sepals and petals are revolute (Singer & Sazima 2001). Most other members of Cranichidinae s.l., and particularly "core" Cranichidinae such as Cranichis Swartz (1788: 120), Ponthieva and Pterichis, have a widely open perianth (cf. Pridgeon et al. 2003, Salazar et al. 2009). Pollination in these groups has not been documented in detail, but casual in situ observations of various dipterans visiting flowers of Ponthieva fertilis (Lehmann & Kraenzlin in Krainzlin 1899: 498) Salazar (in Salazar et al. 2009: 416) and P. racemosa (Walter 1788: 222) Mohr (1901: 460) indicated that their flowers function differently from those of Spiranthinae, with the insects probing the labellum of the flowers with their mouth parts as they stand on the other perianth parts (G. A. Salazar, pers. obs.). The relatively short, partially diverging sepals and petals of *Discyphus scopulariae* (Fig. 1B, C) display a half-way stage between the wide-open flowers of Cranichidinae s.l. and the tubular flowers of genuine Spiranthinae.

Szlachetko (1992) pointed out some similarities in labellum morphology between *Discyphus* and *Coccineorchis* Schlechter (1920: 434), most notably the swollen retrorse basal auricles (Fig. 2C, G), but this feature also occurs in other members of Spiranthinae, such as *Sarcoglottis* Presl (1827: 95; Salazar 2003b), a distant relative of both

Coccineorchis and *Discyphus* (Figs. 3, 4) as well as in *Cybebus* Garay (1978: 15; not available for molecular study), and therefore it likely evolved independently several times. Schlechter (1920), Balogh (1982) and Szlachetko (1995) grouped *Discyphus* with a heterogeneous assortment of genera, including *Beloglottis* Schlechter (1920: 364), *Hapalorchis* Schlechter (1919: 30), *Spiranthes* Richard (1817: 20) and *Galeottiella* Schlechter (1920: 360), the last now in a monogeneric subtribe (Salazar *et al.* 2002, 2003; Salazar 2003a) because of their bifid rostellum remnant (Fig. 1E); however, this feature occurs in distantly related groups both in and outside Spiranthinae (e.g., in various Goodyerinae, such as *Goodyera* Brown (1813: 197) and *Platylepis* Richard (1828: 34) and should not be viewed as evidence of a close relationship.

FIGURE 3. Phylogenetic relationships in Spiranthinae inferred from nuclear (ITS) and plastid (*rbcL*, *matK-trnK*, *trnL-trnF*) DNA sequences by maximum parsimony (MP). The main tree is the strict consensus of 24 most parsimonious trees (MPTs) recovered by the analysis; numbers under branches are bootstrap proportions (from the MP bootstrap analysis). The inset on the upper left hand is one of the 24 MPTs with branches drawn proportional to branch length. The major clades referred to in the text are marked as follows: a, *Stenoptera* clade; b, *Prescottia* clade; c, "core" Cranichidinae; d, Spiranthinae (excluding *Discyphus*). The position of *Discyphus* is indicated by an asterisk (*).

All of the above shows that *Discyphus* does not fit into any of the previously identified main clades of core spiranthids, appearing instead to represent an isolated lineage that diverged together with Cranichidinae and Spiranthinae from their common ancestor relatively rapidly, as shown by the comparatively few nucleotide substitutions along their

subtending branches in the molecular tree in contrast with their noticeable morphological disparity. Neither the DNA data here analysed nor morphology support the inclusion of *Discyphus* in Spiranthinae. Since our ML analysis grouped *Discyphus* with Cranichidinae (with low bootstrap support), an option would be to include *Discyphus* in Cranichidinae. However, in our view the genetic and structural distinctness of *Discyphus* supports recognition of a distinct subtribe, which is little disruptive to the established taxonomy and better reflects the complex diversification history of the whole group; it also avoids the loss of evolutionary information that would result from merging morphologically and functionally distinctive groups such as *Discyphus* and Cranichidinae. Even though *Discyphus* presently includes only one species, both its phylogenetic position and morphological uniqueness indicate that it is a relict from the early divergence that also gave rise to the subtribes Spiranthinae and Cranichidinae, which, with their approximately 470 and 215 species, respectively (Pridgeon *et al.* 2003), represent the major diversification of terrestrial orchids in the Neotropics. Therefore, we opt here for placing *Discyphus* in a subtribe of its own.

FIGURE 4. Phylogenetic relationships in Spiranthinae inferred from nuclear (ITS) and plastid (*rbcL*, *matK-trnK*, *trnL-trnF*) DNA sequences by maximum likelihood (ML). The main tree is the ML tree; numbers under branches are bootstrap proportions from the ML bootstrap analysis. The inset on the upper left hand is the ML tree with branches drawn proportional to branch lengths. The major clades referred to in the text are marked as follows: a, *Stenoptera* clade; b, *Prescottia* clade; c, "core" Cranichidinae; d, Spiranthinae (excluding *Discyphus*). The position of *Discyphus* is indicated by an asterisk (*).

Taxonomy

Discyphinae Salazar & van den Berg, subtribus nova.

Type: Discyphus scopulariae (Reichenbach 1854a: 11) Schlechter (1919: 417)

Acaulescent, deciduous geophytes with fasciculate roots; a single orbicular, cordate leaf lying on the substrate and clasping the base of the scape; inflorescence densely glandular-pubescent; flowers campanulate, resupinate, petals free from the dorsal sepal but adnate to the proximal half of the column, labellum free (i.e., its margins not adhering to the sides of the column); column provided with two separate receptive areas, those concave and with raised margins ("cup-shaped").

This subtribe consists of a monospecific genus distributed from Panama, northern Venezuela and Trinidad to eastern Brazil (Szlachetko 1992, Salazar 2003b).

Discyphus Schlechter (1919: 417). Type species: *Discyphus scopulariae* (Rchb.f.) Schltr. *Dikylikostigma* Kraenzlin (1919: 321). Type species: *Dikylikostigma preussii* Kraenzlin (1919: 321)

Discyphus scopulariae (Rchb.f.) Schltr..

Basionym: *Spiranthes scopulariae* Rchb.f.. Type: VENEZUELA. Caripe, *Moritz 626* (holotype W-R!). Homotypic synonym: *Gyrostachys scopulariae* (Rchb.f.) Kuntze (1891: 664).

Heterotypic synonyms: *Dikylikostigma preussii* Kraenzl. Type: VENEZUELA. La Victoria, *Preuss 1626* (B, destroyed); *Spiranthes rotundifolia* Cogniaux (1906: 542). Type: BRAZIL. Bahia, *Salzmann 538* (G); *Cyclopogon rotundifolius* (Cogn.) Schlechter (1920: 394)

Discyphus scopulariae is terrestrial in savannas and riparian forests from near sea level to about 800 m. Full descriptions and additional information on *Discyphus* can be found in Foldats (1969), Garay (1982), Szlachetko (1992) and Salazar (2003b).

Acknowledgements

We thank the Curators of AMES, AMO, BM, COL, K, ENCB, F, IBUG, IEB, MEXU, MO, NY, PA, RB, SEL, SERO, SP, UEFS, VEN and W for courtesies extended during study of the collections in their charge; Alec Pridgeon and Judi Stone for granting permission to reproduce the line drawing of Fig. 2; Lidia I. Cabrera (Laboratorio de Sistemática Molecular-Botánica, Instituto de Biología, Universidad Nacional Autónoma de México) for help with DNA sequencing; and Alec Pridgeon, Mark W. Chase and an anonymous reviewer for insightful suggestions to the manuscript. CvdB thanks a Scientific Productivity Scholarship from CNPq (PQ-1D) and a FAPESB grant (PNX0014/2009).

Literature cited

- Álvarez-Molina, A. & Cameron, K.M. (2009) Molecular phylogenetics of Prescottiinae *s.l.* and their close allies (Orchidaceae, Cranichideae) inferred from plastid and nuclear ribosomal DNA sequences. *American Journal of Botany* 96: 1020–1040. http://dx.doi.org/10.3732/ajb.0800219
- Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F. Campbell, C.S. & Donoghue, M.J. (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. *Annals of the Missouri Botanical Garden* 82: 247–277. http://dx.doi.org/10.2307/2399880
- Balogh, P. (1982) Generic redefinition in subtribe Spiranthinae (Orchidaceae). *American Journal of Botany* 69: 1119–1132. http://dx.doi.org/10.2307/2443086
- Batista, J.A.N., Meneguzzo, T.E.C., Salazar, G.A., Bianchetti, L. de B. & Ramalho, A.J. (2011) Phylogenetic placement, taxonomic revision, and a new species of *Nothostele* (Orchidaceae), an enigmatic genus endemic to the cerrado of central Brazil. *Botanical Journal of the Linnean Society* 165: 348–363.

http://dx.doi.org/10.1111/j.1095-8339.2011.01113.x

- Benítez-Vieira, S., Medina, A.M., Glinos, E. & Cocucci, A.A. (2006) Pollinator mediated selection on floral traits and size of floral display in *Cyclopogon elatus*, a sweat bee-pollinated orchid. *Functional Ecology* 20: 948–957.
 - http://dx.doi.org/10.1111/j.1365-2435.2006.01179.x
- Bergsten, J. (2005) A review of long-branch attraction. *Cladistics* 21: 163–193. http://dx.doi.org/10.1111/j.1096-0031.2005.00059.x
- Blume, C.L. (1825) Bijdragen tot de flora van Nederlandsch Indië 8. National Printer, Jakarta, 434 pp. http://dx.doi.org/10.5962/bhl.title.395
- Brown, R. (1813) Hortus Kewensis, 2nd ed., 5: 188-222.
- Cameron, K.M. (2007) Molecular phylogenetics of Orchidaceae: the first decade of DNA sequencing. *In:* Cameron, K.M., Arditti, J. & Kull, T. (eds.) *Orchid biology: reviews and perspectives, 9.* New York Botanical Garden Press, New York, pp 163-200
- Catling P.M. (1983) Pollination of northeastern North American *Spiranthes* (Orchidaceae). *Canadian Journal of Botany* 61: 1080–1093. http://www.nrcresearchpress.com/doi/abs/10.1139/b83-116
- Chase, M.W. & Albert, V.A. (1998) A perspective of the contribution of plastid *rbcL* DNA sequences to angiosperm phylogenetics. *In:* Soltis, D.E., Soltis, P.S & Doyle, J.F. (eds.) *Molecular systematics of plants II: DNA sequencing.* Kluwer, London, pp. 488–507.
- Chase, M.W., Cameron, K.M., Barrett, R.L. & Freudenstein, J.V. (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. *In:* Dixon, K.W., Kell, S.P., Barrett, R.L. & Cribb, P.J. (eds.) *Orchid conservation*. Natural History Publications (Borneo), Kota Kinabalu, pp. 69–89.
- Cisternas, M., Salazar, G.A., Verdugo, G., Novoa, P., Caderón, X. & Negritto, M. (2012) Phylogenetic analysis of Chloraeinae (Orchidaceae) based on plastid and nuclear DNA sequences. *Botanical Journal of the Linnean Society* 168: 258–277. http://dx.doi.org/10.1111/j.1095-8339.2011.01200.x
- Clements, M.A., Jones, D.L., Sharma, I.K., Nightingale, M.E., Garratt, M. J., Fitzgerald, K.J., Mackenzie, A.M. & Molloy, B.P.J. (2002) Phylogenetics of Diurideae (Orchidaceae) based on the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. *Lindleyana* 17: 135–171.
- Cogniaux, A. (1906) Addenda et emendanda. Flora Brasiliensis 3(6): 525-584.
- Dressler, R.L. & Dodson, C.H. (1960) Classification and phylogeny of the Orchidaceae. *Annals of the Missouri Botanical Gardens* 47: 25-68.
- Endlicher, S. (1842) Mantissa botanica sistens genera plantarum, supplementum, 2. Beck, Vienna, 109 pp.
- Felsenstein, J. (1978) Cases in which parsimony or compatibility methods will be positively misleading. *Systematic Zoology* 27: 401–410.

http://dx.doi.org/10.2307/2412923

- Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39: 783–791. http://dx.doi.org/10.2307/2408678
- Figueroa, C., Salazar, G.A., Zavaleta, A. & Engleman, M. (2008) Root character evolution and systematics in Cranichidinae, Prescottiinae and Spiranthinae (Orchidaceae, Cranichideae). *Annals of Botany* 101: 509–520. http://dx.doi.org/10.1093/aob/mcm328
- Figueroa, C., Salazar, G.A., Terrazas, T. & Dávila, P. (2012) Estructura y desarrollo del ginostemio en Dichromanthus michuacanus (Orchidaceae, Spiranthinae). Revista Mexicana de Biodiversidad 83: 73–82.
- Foldats, E. (1969) Orchidaceae. In: T. Lasser (ed.), Flora de Venezuela, 15(1). Instituto Botánico, Caracas, 502 pp.
- Garay, L.A. (1978) Studies in American orchids X. Botanical Museum Leaflets (Harvard University) 26: 1-38.
- Garay, L.A. (1982) A generic revision of the Spiranthinae. Botanical Museum Leaflets (Harvard University) 28: 277-425.
- Górniak, M., Mytnik-Ejsmont, J., Rutkowski, P., Tukałło, P., Minasiewicz, J. & Szlachetko, D.L. (2006) Phylogenetic relationships within the subtribe Spiranthinae *s.l.* (Orchidaceae) inferred from the nuclear ITS region. *Biodiversity Research and Conservation* 1-2: 18–24.
- Hilu, K.W. & Liang, H. (1997) The *matK* gene: sequence variation and application in plant systematics. *American Journal of Botany* 84: 830–839.

http://dx.doi.org/10.2307/2445819

Hooker, W.J. (1824) *Exotic flora, containing figures and descriptions of new, rare or otherwise interesting exotic plants,* 2. Blackwood, Edinburgh, 150 pp.+ plates.

http://dx.doi.org/10.5962/bhl.title.51264

Hudson, W. (1762) Flora Anglica. Published by the author, London, 506 pp.

- Huelsenbeck, J.P. (1997) Is the Felsenstein zone a flytrap? Systematic Biology 46: 69-74.
- http://dx.doi.org/10.1093/sysbio/46.1.69

Jones, D.L., Clements, M.A., Sharma, I.K., Mackenzie, A.M. & Molloy, B.P.J. (2002) Nomenclatural notes arising from studies into the

tribe Diurideae (Orchidaceae). Orchadian 13: 437-468.

- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30: 772–780. http://dx.doi.org/10.1093/molbev/mst010
- Kores, P.J., Molvray, M., Weston, P.H., Hopper, S.D., Brown, A.P., Cameron, K.M. & Chase, M.W. (2001) A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. *American Journal of Botany* 88: 1903–1914. http://dx.doi.org/10.2307/3558366
- Kraenzlin, F. (1899) Orchidaceae Lehmannianae in Guatemala, Costarica, Columbia et Ecuador collectae, quas determinavit et descripsit. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 26: 437–502.
- Kraenzlin, F. (1919) Zwei neue und eine kritische Orchidacee. Notizblatt Botanisches Garten zu Berlin-Dahlem 7: 319-322.
- Kuntze, O. (1891) Revisio generum plantarum, 2. Felix, Leipzig, 1011 pp.
- http://dx.doi.org/10.5962/bhl.title.327

Lindley, J. (1840) Tribe VI. Neottieae. In: The genera and species of orchidaceous plants. Ridgway, London, pp. 441-524.

Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *In: Proceedings of the Gateway Computing Environments Workshop (GCE)*, 14 Nov. 2010, New Orleans, pp. 1–8. http://dx.doi.org/10.1109/gce.2010.5676129

- Mohr, C.T. (1901) *Plant life of Alabama*. Contributions from the U.S. National Herbarium, 6. U.S. Department of Agriculture, Washington, D.C., 921 pp.
- Ormerod, P. & Cribb, P.J. (2003) Goodyerinae. In: Pridgeon A.M., Cribb P.J., Chase M.W., and Rasmussen, F.N. (eds.), Genera orchidacearum 3: Orchidoideae part 2, Vanilloideae. Oxford University Press, Oxford, pp. 63–153.
- Pfeiffer, L. (1874) Nomenclator botanicus, 2(1). Fischer, Cassel, 1876 pp.
- Pfitzer, E. (1887) Entwurf einer natürlichen Anordnung der Orchideen. Winter's, Heildelberg, 114 pp.
- Presl, C. (1827) Reliquia Haenkeanae seu, Descriptiones et icones plantarum: quas in America meridionali et boreali, in insulis Philippinis et Marianis collegit Thaddaeus Haenke, vol. 1, fasc. II. Calve, Prague, pp. 85–148. http://dx.doi.org/10.5962/bhl.title.48628
- Pridgeon, A.M., Cribb, P.J., Chase, M.W. & Rasmussen, F.N. (eds.). (2003) Genera orchidacearum, 3: Orchidoideae part 2, Vanilloideae. Oxford University Press, Oxford, 358 pp.
- Reichenbach, H.G. (1854a) Die Wagener'schen Orchideen. Bonplandia (Hannover) 2: 10-26.
- Reichenbach, H.G. (1854b) Xenia orchidacea. Brockhaus, Leipzig, 246 pp.
- Richard, A. (1828) Monographie des orchidées des Iles de France et de Bourbon. *Mémoires de la Société d'Histoire Naturelle de Paris* 4: 1–74.
- Richard, A. & Galeotti, H.G. (1845) Orchidographie mexicaine, d'après les échantillons, notes et dessins de MM. Galeotti, Linden, Funck, Ghiesbreght. Annales des sciences naturelles; comprenant la physiologie animale et végétale, l'anatomie comparée des deux règnes, la zoologie, la botanique, la minéralogue et la géologie, Paris, 3 (3): 15–33.
- Richard, L.C. (1817) De orchideis Europaeis annotationes. *Mémoires du Museum d'Histoire Naturelle Paris* 4: 1–37. http://dx.doi.org/10.5962/bhl.title.15465
- Ridley, H.N. (1907) Materials for a flora of the Malayan Peninsula, 1. Methodist Publishing House, Singapore, 233 pp.
- Salazar, G.A. (2003a) Galeottiellinae. *In:* Pridgeon A.M., Cribb P.J., Chase M.W., and Rasmussen, F.N. (eds.), *Genera orchidacearum 3:* Orchidoideae part 2, Vanilloideae. Oxford University Press, Oxford, pp. 59–63.
- Salazar, G.A. (2003b) Spiranthinae. In: Pridgeon A.M., Cribb P.J., Chase M.W., and Rasmussen, F.N. (eds.), Genera orchidacearum 3: Orchidoideae part 2, Vanilloideae. Oxford University Press, Oxford, pp. 164–278.
- Salazar, G.A. (2009) DNA, morphology and systematics of *Galeoglossum* (Orchidaceae, Cranichidinae). *In:* Pridgeon A.M., Suárez J.P., eds. *Proceedings of the second scientific conference on Andean orchids*. Universidad Técnica Particular de Loja, Loja, pp. 161–172.
- Salazar, G.A. & Ballesteros-Barrera, C. (2010) *Sotoa*, a new genus of Spiranthinae (Orchidaceae) from Mexico and the southern United States. *Lankesteriana* 9: 491–504.
- Salazar, G.A. & Dressler, R.L. (2011) The leaves got it right again: DNA phylogenetics supports a sister-group relationship between *Eurystyles* and *Lankesterella* (Orchidaceae, Spiranthinae). *Lankesteriana* 11: 337–347.
- Salazar, G.A. & Jost. L. (2012) *Quechua*, a new monotypic genus of Andean Spiranthinae (Orchidaceae). *Systematic Botany* 37: 78–86. http://dx.doi.org/10.1600/036364412x616657
- Salazar, G.A., Chase, M.W. & Soto Arenas, M.A. (2002) Galeottiellinae, a new subtribe and other nomenclatural changes in Spiranthinae (Orchidaceae, Cranichideae). *Lindleyana* 17: 172–176.
- Salazar, G.A., Chase, M.W., Soto, M.A. & Ingrouille, M. (2003) Phylogenetics of Cranichideae with emphasis on Spiranthinae (Orchidaceae, Orchidoideae): evidence from plastid and nuclear DNA sequences. *American Journal of Botany* 90: 777–795.

http://dx.doi.org/10.3732/ajb.90.5.777

- Salazar, G.A., Cabrera, L.I., Madriñán, S. & Chase, M.W. (2009) Phylogenetic relationships of Cranichidinae and Prescottiinae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences. *Annals of Botany* 104: 403–416. http://dx.doi.org/10.1093/aob/mcn257
- Salazar, G.A., Cabrera, L.I. & Figueroa, C. (2011a) Molecular phylogenetics, floral convergence and systematics of *Dichromanthus* and *Stenorrhynchos* (Orchidaceae, Spiranthinae). *Botanical Journal of the Linnean Society* 167: 1–18. http://dx.doi.org/10.1111/j.1095-8339.2011.01161.x
- Salazar, G.A., Chávez-Rendón, C., Jiménez-Machorro, R. & de Ávila, A. (2011b) A new species of *Galeoglossum* (Orchidaceae, Cranichidinae) from Oaxaca, Mexico. *Systematic Botany* 36: 261–267. http://dx.doi.org/10.1600/036364411x569462
- Schlechter, R. (1919) LIX. Zwei interessante Gattungen der Spiranthinae. Repertorium Specierum Novarum Regni Vegetabilis 15: 416-417.

http://dx.doi.org/10.1002/fedr.19190152506

- Schlechter, R. (1920) Versuch einer systematischen Neuordnung der Spiranthinae. Beihefte zum Botanischen Centralblatt 37: 317-454.
- Schlechter, R. (1926) Das System der Orchidaceen. Notizblatt des Botanischen Garten und Museums zu Berlin-Dahlem 88: 563–591. http://dx.doi.org/10.2307/3994326
- Singer, R. (2002) The pollination biology of *Sauroglossum elatum* Lindl. (Orchidaceae: Spiranthinae): moth pollination and protandry in a Neotropical Spiranthinae. *Botanical Journal of the Linnean Society* 138: 9–16. http://dx.doi.org/10.1046/j.1095-8339.2002.00003.x
- Singer, R.B. & Cocucci, A.A. (1999) Pollination mechanism in southern Brazilian orchids which are exclusively or mainly pollinated by halictid bees. *Plant Systematics and Evolution* 217: 101–117. http://dx.doi.org/10.1007/bf00984924
- Singer, R.B. & Sazima, M. (1999) The pollination mechanism in the 'Pelexia alliance' (Orchidaceae: Spiranthinae). Botanical Journal of the Linnean Society 131: 249–262.

http://dx.doi.org/10.1111/j.1095-8339.1999.tb00768.x

- Singer, R.B. & Sazima, M. (2000). The pollination of *Stenorrhynchos lanceolatus* (Aublet) L.C.Rich. (Orchidaceae: Spiranthinae) by hummingbirds in southeastern Brazil. *Plant Systematics and Evolution* 223: 221–227. http://dx.doi.org/10.1007/bf00985281
- Singer, R.B. & Sazima, M. (2001) Pollination mechanism in three sympatric *Prescottia* (Orchidaceae: Prescottinae) species from southeastern Brazil. *Annals of Botany* 88: 999–1005.

http://dx.doi.org/10.1006/anbo.2001.1535

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688–2690.

http://dx.doi.org/10.1093/bioinformatics/btl446

Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web-servers. *Systematic Biology* 75: 758–771.

http://dx.doi.org/10.1080/10635150802429642

Swartz, O. (1788) *Nova genera & species plantarum*. Swederi, Stockholm, 152 pp. http://dx.doi.org/10.5962/bhl.title.433

Swofford, D.L. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), v. 4.0 beta 10. Sinauer, Sunderland.

- Szlachetko, D.L. (1992) Genera and species of the subtribe Spiranthinae (Orchidaceae), 5. *Discyphus. Fragmenta Floristica et Geobotanica* 37: 437–441.
- Szlachetko, D.L. (1995) Systema orchidalium. Fragmenta Floristica et Geobotanica (Supplement) 3: 1-152.
- Szlachetko, D.L. & Rutkowski, P. (2000) Gynostemia orchidalium. I. Apostasiaceae, Cypripediaceae, Orchidaceae (Thelymitroideae, Orchidoideae, Tropidioideae, Spiranthoideae, Neottioideae, Vanilloideae). *Acta Botanica Fennica* 169:1–379.
- Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17: 1105–1109.

http://dx.doi.org/10.1007/bf00037152

Walter, T. (1788) Flora Caroliniana secundum systema vegetabilium perillustris Linnaei digesta. Fraser, London, 263 pp. http://dx.doi.org/10.5962/bhl.title.9458