ITS $_{1}$ DNA sequences reveal population genetic differentiation and structure in the Chinese clam Cyclina sinensis (Veneridae: Bivalvia)

PAN BAOPING ${ }^{1 *}$, ZHANG LIYAN ${ }^{1}$, SONG XIN ${ }^{1}$, GAO WEIWEI ${ }^{1}$ \& BU WENJUN ${ }^{2}$
${ }^{1}$ School of Life Sciences, Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation, Tianjin Normal University, Tianjin, P R China, 300387
${ }^{2}$ School of Life Sciences, Nankai University, Tianjin, P R China, 300071
*Corresponding author-Email: panbaoping@yahoo.com.cn

Abstract

The genetic diversity and structure of 10 populations of Cyclina sinensis distributed along coastal regions in China were investigated by sequencing ribosomal DNA internal transcribed spacer $_{1}\left(\mathrm{ITS}_{1}\right)$. The lengths of the ITS_{1} sequences of C. sinensis ranged from 564 to 595 nucleotides. Forty-two allelic sequences [nucleotide diversity; $\pi=0.033 ; \theta$ (per site) based on the total number of mutations $=0.048$] have been identified from a total of 80 individuals. Phylogenetic analysis of these sequences, using a sample from Japan as outgroup, recovered a topology containing two major clades. One clade comprised the samples from the China Bohai Sea, the Yellow Sea and the Dong Sea (northern and middle parts of the China Sea), the other clade represented the those from the South China Sea. F_{ST} values indicated significant differences in each pairwise combination of populations representing each of the two clades, while the AMOVA analysis showed that the majority of genetic variation (67.7%) was attributable to variation between the two main clades, with 25.7% attributable to within-population variation and 6.6% to between populations within groups. These results suggest strong genetic structure among the Chinese populations of C. sinensis. Evolutionary rate analysis implies that the two main clades have experienced population isolation since the late Pleistocene (approximately 0.35 and 1.91 MY ago), due to coastal freshwater intrusions and/or cold current upwelling.

Key words: Genetic differentiation; genetic structure; AMOVA; biogeographic barrier

Introduction

The venerid clam Cyclina sinensis (Gmelin, 1791) is a commercially important marine bivalve (Liu and Xu 2003) that is abundant and widely distributed around Asia. C. sinensis is commonly found in intertidal zones of muddy sand beaches along the north and south coasts of China, in Japan and in Korea. Its range extends to the Far East of Russia and Southeast Asia. It can tolerate wide temperature and salinity ranges. Recently, a number of studies have been carried out on its geographic distribution (Xu 1997; Zhuang 2001), anatomy (Yu and Zheng 2001; Zhao. et al. 2009), ecology and reproduction (Yu et al.1995; Xu 2000; Liu et al. 2002), genetic markers (Wang et al. 2001; Chen et al. 2004; Zhao et al. 2007; Feng et al. 2010), and population diversity and differentiation(Pan et al. 2005).Population genetic structure is dependent on the interaction of the biology of a species and the environment in which it resides. Marine organisms generally show low levels of genetic differentiation over large geographic distances (Avise 2000; Palumbi and Baker 1994), owing to the absence of obvious barriers to migration and to passive dispersal by pelagic larval stages. However, there are a number of exceptions due to biological mechanisms, water dynamics, or historical events (Shulman and Bermingham 1995; Shulman 1998; Palumbi et al.1997; Barber et al. 2002; Nelson et al. 2000). Recent phylogeographical investigations have revealed surprising levels of previously hidden marine biodiversity, casting doubt on the long-held paradigm that marine systems are largely open to movement among populations (Mathews 2006). Thus, a clearer understanding of the connectivity among marine populations may result in more effective designs for marine-protected areas and reserves.

In bivalve molluscs, a variety of methods, such as PCR amplification alone, or PCR amplification followed by restriction analysis or sequencing, have been used to differentiate related species (Ding et al. 2004) and to explore the phylogeographic and phylogenetic relationships (He et al. 2005; Vidigal et al. 2004; Reece et al. 2008; Shilts et al. 2007; Källersjö et al. 2005; Lee and Ó Foighil 2005). Eizadora et al., (2000) demonstrated that ITS-1 sequence variations, identified at very high polymorphic sites in Tridacna crocea (Lamarck, 1819), could be appropriate markers for molecular systematic studies at the species and population levels. Ribosomal DNA internal transcribed spacer (ITS) sequence variation has generally proven to be a powerful tool for studying phylogenetics and for species identification (Mizukami and Kito1999), and has been used with a wide range of invertebrates (Chen and Miller 1996; Chu et al. 2001; Vogler and Desalle 1994; Vane et al. 1999) including molluscs (Stothard et al. 1996; Caporale et al. 1997; King et al.1999; Wilber et al. 2000; Kenchington et al. 2002; Ding et al. 2004; Vierna et al. 2010). Consequently for this study, the nucleotide sequence of ribosomal DNA internal transcribed spacers was examined to assess the genetic diversity and phylogeographic structure of C. sinensis from Chinese coastal populations.

Materials and Methods

Samples were collected from ten populations of C. sinensis from the maritime coasts of China (Fig.1) which encompass a wide range of geographic regions and habitats. Between 25 and 30 individuals representing each population were collected from Chinese Sanya $\left(18.20^{\circ} \mathrm{N}\right)$ to Zhuanghe
$\left(39.78^{\circ} \mathrm{N}\right)$.The adductor muscles of each specimen were dissected out and fixed in 70% ethanol. The details of the
localities of the sampled populations are given in Table 1.

FIGURE 1. The sampled locations of C. sinensis populations. The line (R) indicates a molecular data similarity between the two areas and B indicates an apparent barrier (see text).

TABLE 1. The locations and geographic coordinates for the ten sampled populations of C. sinensis.

Analyzed Samples	Area	Abbre- viations	Geographic coordinates
	Sanya	HN	$109.50^{\circ} \mathrm{E}, 18.20^{\circ} \mathrm{N}$
	Huidong	HD	$114.70^{\circ} \mathrm{E}, 22.97^{\circ} \mathrm{N}$
Ingroup	Huangyan	HY	$121.27^{\circ} \mathrm{E}, 28.64^{\circ} \mathrm{N}$
Samples	Qidong	QID	$121.67^{\circ} \mathrm{E}, 31.80^{\circ} \mathrm{N}$
	Qingdao	QD	$120.33^{\circ} \mathrm{E}, 36.07^{\circ} \mathrm{N}$
	Laizhou	LZ	$119.90^{\circ} \mathrm{E}, 37.10^{\circ} \mathrm{N}$
	Beidaihe	BDH	$119.57^{\circ} \mathrm{E}, 39.28^{\circ} \mathrm{N}$
	Tanggu	TG	$117.39^{\circ} \mathrm{E}, 39.00^{\circ} \mathrm{N}$
	Zhuanghe	ZH	$122.06^{\circ} \mathrm{E}, 39.78^{\circ} \mathrm{N}$
Outgroup Sample	Miyagi (Japan)	JP	$141.00^{\circ} \mathrm{E}, 38.23^{\circ} \mathrm{N}$

Eight individuals were randomly selected from each population. Genomic DNA was extracted following the method given in Grewe et al.(1993). A 0.1 g sample of tissue was pulverized and incubated in $700 \mu \mathrm{l}$ buffer ($25 \mathrm{mmol} / \mathrm{L}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.3 \mathrm{M} \mathrm{NaCl}, 5 \mathrm{mmol} / \mathrm{L}$ ETDA, 0.5% CTAB,
0.1% 2-mercaptoethanol, $100 \mu \mathrm{~g} / \mathrm{ml}$ proteinase K) at $60^{\circ} \mathrm{C}$ for 2.5 h , and DNA was purified twice by chloroform/ isoamylalcohol extraction followed by ethanol precipitation. PCR was performed in a $25 \mu \mathrm{l}$ volume containing 25 ng genomic DNA, $1 \times$ PCR buffer, $100 \mu \mathrm{M}$ dNTP mix, 1.5 mM $\mathrm{MgCl}_{2}, 0.2 \mu \mathrm{M}$ of each primer and 1 Unit of Taq polymerase (TaKaRa). The primers described by Gaffney et al. (1998) for ITS1-a 5`-GGTTCTGTAGGTGAACCTGC-3’ and ITS1-b 5`-CTGCGTTCTTCATCGACCC-3` were used. Amplification started at $94^{\circ} \mathrm{C}$ for 3 min for pre-denaturation, followed by 35 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $51^{\circ} \mathrm{C}$ for 60 s and elongation at $72^{\circ} \mathrm{C}$ for 60 s , with 7 min at $72^{\circ} \mathrm{C}$ for final elongation. The amplified fragments were separated by agarose gel (1.2\%) electrophoresis in $1 \times$ TBE ($89 \mathrm{mmol} / \mathrm{L}$ Tris, $89 \mathrm{mmol} / \mathrm{L}$ boric acid, $5 \mathrm{mmol} / \mathrm{L}$ EDTA, pH 8.3), stained with ethidium bromide and observed under ultraviolet light. After purification using the UNIQ-10 Kit (Sangon, Shanghai), PCR products were ligated into pMD18-T Vector (Takara) and used to transform a competent cell of Escherichia coli Top10.Recombinant colonies were identified by IPTG/X-Gal blue-white screening. The positive clones were sequenced in both directions using a DNA sequencer (ABI PRISM 3730, Applied Biosystems).

The sequences were aligned using ClustalX 1.83 (Thompson et al. 1997). For the DNA sequence, full multiple alignment was executed using the default parameters. Allelic sequence diversity was analyzed by DNAsp 4.10 (Rozas et al.2003), and the nucleotide sequence data were submitted to GenBank (Accession numbers (DQ900882-DQ900895, EU979388- EU979417). The pairwise distance matrix of the allelic sequences was generated using the method of Hasegawa et al. (1985) to evaluate the ratio of transition to transversions. The Maximum-likelihood (ML) tree of the allelic sequences was produced using PAUP4.10 beta (Swofford 1998). For the ML analysis, the best-fitting nucleotide substitution model (GTR $+\mathrm{I}+\mathrm{G}$) were selected by Modeltest 3.7 (Posada and Crandall, 1998) using the Akaike Information Criterion (AIC). The ML trees were generated using a random stepwise heuristic search (only one tree was retained) based on 1000 replicates with random additions of sequence. Bootstrap analysis (1000 replication) was performed using a heuristic search procedure. The same likelihood parameters were used to test the values of pairwise distance among allelic sequence and a molecular evolution clock was calculated for the ML trees. Neighborjoining (NJ) trees based on $F_{S T}$ distances between the 10 populations were produced using Mega3.1 (Kumar et al., 2005). Mega was also used to calculate the genetic distance between populations based on the Kimura 2-Parameter method.

The program AMOVA (Arlequin 3.1, Excoffier et al. 2006) was used to investigate the genetic spatial structure. This maximizes the proportion of the total genetic variation between groups of populations, without pre-defining the populations. The program package was used to analyze $F_{S T} \mathrm{P}$ values and its statistical significance from ITS1 sequence of C. sinensis across populations.

Results

The ITS1 sequences of C. sinensis obtained ranged from 564 (HD1, Hap36) to 595 (QD4, Hap20) nucleotides in length. The alignments were 621 nucleotides long (including sites with gaps/missing data). The sequence alignments contained 96 polymorphic sites (Table.2). In total, 42 Allelic sequences were identified among the ITS1 sequences. There was an overall nucleotide diversity of $\pi=0.033$, and the θ estimate based on the total number of mutations was 0.048 . The distribution of the allelic sequences across populations and their GenBank Accession Numbers are also shown in Table 2.

The ML (Maximum-likelihood) phylogenetic tree based on the 42 identified allelic sequences (Fig. 2) has two major clades. One basic clade comprised the populations (ZH, QD, LZ, QID, BDH, TG and HY) from the China Bohai Sea, the Yellow Sea, and the Dong Sea. Allelic sequence 22 was found in all seven populations. Allelic sequence 10 was found in four populations (ZH, BDH, TG and LZ) Allelic sequence 13 was found in three (QD, QID and HY) and allelic sequence 27 in two (BDH and LZ).

Other allelic sequences were population specific. The second clade contains the Allelic sequence of the populations of HD and HN from the South China Sea. Allelic sequence 31 and 42 were found in both populations. Notably, the haplotypes in the Miyagi JP population (outgroup) were associated with populations from the South China Sea (Fig. 1), this "association" is due to the sharing of allelic sequence 42 (Table 2). The minimum pairwise distance between allelic sequences was 0.134 . Using an estimated divergence rates for ITS-1 of between 0.07 and 0.38 per MY (Page and Linse 2002), estimates of the time since population segregation distribution of C. sinensis in the study areas was ($0.35-$ 1.91MY before present) suggesting consistency with a sea level change since the late Pleistocene.

FIGURE 2. Maximum-likelihood tree based on the ITS- ${ }_{1}$ allelic sequences of C. sinensis. The numbers above branches indicate the percentage support among 1000 bootstrap replicates ($>50 \%$), the scale indicates genetic distance and estimated evolutionary time (in millions of years).
TABLE 2. The polymorphic sites and Accession numbers of the ITS1 haplotype in the populations of C. sinensis

As shown in Table 3, average Kimura 2-parameter genetic distances among the populations $\mathrm{ZH}, \mathrm{QD}, \mathrm{LZ}$, QID, BDH, TG and HY were between 0.020 and 0.060 . The $F_{S T}$ values were not significantly different among these
populations. However, the genetic distances (ranging from 0.526 to 0.835 between these populations and populations HN and HD) representing the second clades were remarkably large ($\mathrm{P}<0.05$).

TABLE.3. Pairwise distance matrix of the ITS1 sequences of the sampled populations?Below diagonal, average pairwise Kimura 2parameter genetic distance; above diagonal, significant $F_{S T} \mathrm{P}$ values? Significance Level $=0.05 ; \mathrm{P}>0.05=-, \mathrm{P}<0.05=+$

Population	1	2	3	4	5	6	7	8	9	10
1 QID	0.000	-	-	-	-	-	-	+	+	+
2 QD	0.042	0.000	-	-	-	-	-	+	+	+
3 ZH	0.034	0.040	0.000	-	-	-	-	+	+	+
4 HY	0.020	0.023	0.084	0.000	-	-	-	+	+	+
5 LZ	0.056	0.074	0.060	0.035	0.000	-	-	+	+	+
6 TG	0.038	0.034	0.031	0.114	0.102	0.000	-	+	+	+
7 BDH	0.060	0.041	0.028	0.120	0.052	0.023	0.000	+	+	+
8 HN	0.790	0.760	0.780	0.780	0.786	0.786	0.803	0.000	-	+
9 HD	0.820	0.787	0.808	0.808	0.819	0.818	0.835	0.010	0.000	+
10 JP	0.638	0.604	0.632	0.618	0.634	0.637	0.655	0.526	0.582	0.000

AMOVA analysis (Table 4) showed that most of the variation stemmed from differences between the two major groups. For example, 67.6% of the total was attributable to between-group variations, while only 6.5% was due to variation between populations within groups. The results suggest there are low inter-population differences within each main clade but appreciable inter-individual variation within populations. Furthermore, the main source of genetic variation was groups which represented northern and southern China Sea, indicating that Chinese populations of C. sinensis should be considered as two distinct geographical groups.

TABLE.4. An analysis of genetic variation among the 10 sampled populations of C. sinensis using AMOVA.

Source of variation	Degree of freedom	Sum of squares	Variance components	Percentage of variation
Among groups	1	848.657	24.415	67.69
Among populations within groups	8	226.393	2.378	6.59
Within populations Total	70	649.375	9.276	25.72

* Fixation Index: $F_{S / s t}=0.74281$

Discussion

This study is the first to our knowledge to use ITS sequences to assess the genetic structure of a Chinese commercial marine bivalve. On the basis of our results, C. sinensis along the coast of China is separated into two basic clades. The first, comprising locations QD, ZH, LZ, QID, BDH, TG and HY (see Table.1), represented the temperate populations from the northern and middle parts of the China Sea
(including the Bohai Sea, the Yellow Sea and the Dong Sea, latitudes $28.64^{\circ} \mathrm{N}$ to $39.78^{\circ} \mathrm{N}$) while the second clade comprised the tropical locations (HD and HN) from the South China Sea (latitudes $18.20^{\circ} \mathrm{N}$ to $22.97^{\circ} \mathrm{N}$). Interpopulation genetic distances and $F_{S T}$ values indicated a significant genetic differentiation between the two clades (Table 3, Fig 3). Moreover, the results of the AMOVA detected significant differences in the hierarchical levels among groups (Table 4) indicating significant population genetic structure. The spatial genetic heterogeneity for the ITS-1 allelic sequences in Chinese C.sinensis accords with the results of Pan et al. (2005) based on RAPD, Zhao et al. (2007) based on AFLP and Zhao et al. (2009) who used morphological variation and enzyme electrophores to analyze the genetic differentiation of all opatric populations of C. sinensis. The existence of two major lineages in Chinese C. sinensis may partly explain why the aquaculture of C. sinensis has experienced large-scale mortality following long distance stock translocation of seed clams in China since 2002. Our investigation suggests that exchange seed clams between the southern and northern groups of C. sinensis may be problematic.

Past geological and climatic events have probably played a major role in the differentiation of C. sinensis populations. Geographically, the marine regions of China extend vertically across tropical, subtropical and temperate regions with temperature the decisive factor. According to Zhang et al. (1963) and Liu et al. (1963), the Chinese marine molluscan fauna is made up of three components: (1) a rather depauperate boreal element occurring only in the Yellow Sea and the Bohai Sea; (2) an Indo-West-Pacific element composed of a rich fauna of southern species, some of which are widely distributed along the Chinese coast, while others are restricted to the Dong Sea and the South China Sea or to the South China Sea alone; (3) an endemic element of the Sino-Japanese region, which includes some temperate species occurring only in the Yellow Sea or the waters of
northern Japan, and warm-water species occurring in the Dong and South China Seas and in the waters of southern Japan. Xu (1997) suggested that the distribution of some broad-range marine bivalves such as Modiolus elongata (Swainson, 1821), Atrina pectinata (Linnaeuis, 1767), Anomia chinensis (Philippi, 1849) and Cyclina sinensis etc. can transgress boundaries between the above faunal regions. Our studies on the wide-ranging C. sinensis, distributed from Northeast China to the Far East of Russia, Japan, Korea and

Southeast Asia, suggest that the boundaries may have complex effects. The present population genetic structure of a species may only be fully interpreted if one considers the influence of historical events and the complex interactions of biology, geography and climatic shifts (Hewitt 2000). Climatic shifts can create great changes in species geographical distributions and abundances, which can be expected to have detectable genetic consequences (Avise 2000; Hewitt 2000).

FIGURE.3. The Neighbour-joining tree showing the relationships between 10 populations of C. sinensis based on ITS-1 sequences.

The population genetic structures of marine species are often influenced by Pleistocene ice ages (Wang and Sun 1994; Benzie and Williams 1997; Briggs 1999). The two clades in C. sinensis may reflect isolation of marginal seas of the Northwestern Pacific during Pleistocene low sea-level stands. Some authors have suggested that historic barriers, such as sea level changes during the Pleistocene, may have played important roles in creating isolated populations by cutting off local sea basins from the Northwestern Pacific (Liu et al. 2006). Several marginal seas, the Sea of Japan, the Yellow Sea, the East China Sea and the South China Sea, separate East Asia from the northwestern Pacific Ocean. The marginal seas represent a unique tectonic and geographic feature in the Western Pacific region, and have a profound impact on regional climate and environment. During the Pleistocene glacial period, the South China Sea was an enclosed inland sea connected to the Pacific through the Bashi Strait between Taiwan and Luzon. Land bridges were formed between present-day islands and the Asian continent as a result of the lower sea level, which would collectively isolate the South China Sea from the Pacific Ocean and the East China Sea-Yellow Sea. Similar genetic breaks have also been described in marine taxa between East China Sea and South China Sea populations of other marine species (Liu et al. 2007; Tzong 2007; Xu et al. 2009).

Another hypothesis concerning the geographical barrier between those areas was suggested by Xu (1997) who examined the affinities of bivalves from southern and northern China Seas. He found that the similarity of bivalve fauna between southern and northern China Seas was much less than the similarity of southern China Sea and Japan Sea faunas. Many Indian Ocean long shore bivalves such as

Vepricardium asiaticum (Bruguiere, 1792), Vepricardium coronatum (Schröter, 1786) and Vepricardium sinense (Sowerby, 1841) etc. were abundant and widely distributed in the South China Sea and Japan Sea, but have never been reported from Chinese seas northward of the Taiwan Strait. On the other hand, large numbers of subtropical bivalves such as Laevicirce soyoae (Habe, 1951), Bathy tellina citrocarnea (Kuroda \& Habe, 1958) etc. occur all around the Dong Sea, but have never been observed south of the Taiwan Strait, in the South China Sea. These observations are consistent with our finding that the ITS-1 allelic sequences in C. sinensis in Miyagi, Japan are most similar to those in the South China Sea region and differ considerably from those in northern China. Xu (1997) suggested that the freshwaterinfluenced sea coast cold region in the Zhejiang and Fujian provinces of China, with its winter minimum temperatures of about $8^{\circ} \mathrm{C}$ and the intense annual freshwater upwelling from May to October, may act as isolating barriers preventing dispersal (Fig.1, B), decreasing colonization and the gene flow between regions. Zhao et al. (2009) found high genetic divergence at the enzyme level in C. sinensis from southern and northern China seas, and conjectured that this was due to extremely low gene flow between the two regions. Thus, the cold, low-salinity coastal current could be a mechanism for generating biodiversity and population differentiation, which might account for the present-day restricted larval dispersal of C. sinensis between southern and northern China Seas.

In summary we propose that, in C. sinensis, the genetic differences between the two geographical regions, the southern China Sea and the northern China Sea, may be a remnant of past geographical isolation during sea-level changes combined with present-day cold freshwater
upwelling. A molecular clock analysis of the observed ITS $_{1}$ allelic sequences suggests that the two groups of C. sinensis have experienced population isolation since the late Pleistocene ages (approximately between 0.35 and 1.91 MY ago). There has, however, been sufficient time since the last glacial maximum for genetic mixture between the populations if they are not in fact distinct species, unless the coastal fresh water upwelling has maintained the genetic differentiation.

Acknowledgments

This work was supported by the Applied Basic Research Programs of the Science and Technology Commission Foundation of Tianjin P R China (Key Program 09JCZDJC19300; General Program 06YFJMJC11800). We thank the editor and reviewers (Dr Winston Ponder, Dr Don Colgan and an anonymous reviewer) whose constructive criticism helped to improve the manuscript.

References

Avise, J.C. (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts.
Barber, P.H., Palumbi, S.R., Erdmann, M.V. \& Moosa, M.K. (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Molecular Ecology 11, 659-674.
Benzie, J. \& Williams, S.T. (1997) Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768-783.
Briggs, J.S. (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53, 326-335.
Caporale, D.A., Beal, B.F, Roxby, R. \& Van Beneden, R.J. (1997) Population structure of Mya arenaria along the New England coastline. Molecular Marine Biology and Biotechnology 6, 3339.

Chen, C.A., \& Miller, D.J (1996) Analysis of ribosomal ITS1 sequences indicates a deep divergence between Rhodactis (Cnidaria: Anthozoa: Corallimorpharia) species from the Caribbean and the Indo-Pacific/Red Sea. Marine Biology126, 423-432.
Chen, D.P, Shen, H.S., Ding, Y.P., Yang, J.X. \& Xu, P. (2004) Randomly amplified polymorphic DNA analysis of Meretrix meretrix, Cyclina sinensis and Mactra vecerifermis. Marine Science Bulletin P. R. China, 23, 84-87.
Chu, K. H., Li, C. P. \& Ho, H.Y. (2001) The first internal transcribed spacer (ITS1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea. Marine Biotechnology 3, 355-361.
Ding, X. L., He, M. X., Deng, F. J. \& Zhang, X. Y., (2004) 18SITS1 sequence of rRNA in bivalves and its application in phylogenetic analysis. Hereditas 26, 319-324.
Eizadora, T.Y., Ma, A.J. \& Virginia D.M., (2000) Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna crocea. Marine Biotechnology 2, 511-516.
Excoffier, L., Laval, G. \& Schneider, S. (2006) Arlequin (version 3.1): an integrated software package for Population genetics data analysis, Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of

Berne Switzerland.
Feng, Y.W., Li, Q. \& Kong, L.F. (2010) Twenty microsatellite DNA markers for the Venus clam (Cyclina sinensis Gmelin). Conservation Genetics 11, 1189-1192.
Gaffney, P.M., Orbacz, E.A. \& Yu, Z. (1998) Using the D code system to identify DNA sequence variation for studies of population structure in marine organism. Mutation Analysis 2, 329.

Grewe, P.M., Krueger, C.C. \& Aquadro, C.F. (1993) Mitochodrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Fisheries and Aquatic Sciences 50, 2397-2403.
Hasegawa, M., Kishino, H. \& Yano, T. (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160-174.
He, M.X., Huang, L.M., Shi, J.H. \& Jiang, Y.P. (2005) Variability of ribosomal DNA ITS2 and its utility in detecting genetic relatedness of Pearl oyster. Marine Biotechnology 7, 40-45.
Hewitt, G.M. (2000) The genetic legacy of the quaternary ice ages. Nature 405, 907-913.
Källersjö, M., Proschwitz, T.V., Lundberg, S., Eldenäs, P. \& Erséus, C. (2005) Evaluation of IST rDNA as a complement to mitochondrial gene sequences for phylogenetic studies in freshwater mussels: an example using Unionidae from northwestern Europe. Zoologica Scripta 34, 415-424
Kenchington, E., Bird, C.J., Osborne, J. \& Reith, M. (2002) Novel repeat elements in the nuclear ribosomal RNA operon of the flat oysters Ostrea delis C. Linnaeus, 1758 and O.angasi Sowerby, 1871. Journal of.Shellfish Research 21, 697-705.

King, T.L., Michael, S.E, Branimir, G. \& Hoeh, W.R. (1999) Intraspecific phylogeography of Lasmigona Subviridis (Bivalvia Unionidae): conservation implications of range discontinuity. Molecular Ecology 18, 65-78
Kumar, S., Tamura, K., \& Nei, M. (2005) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163.
Lee, T. \& Ó Foighil, D. (2005) Placing the Floridian marine genetic disjunction into a regional evolutionary context using the scorched mussel, Brachidontes exustus, species complex. Evolution 59, 2139-2158
Liu, R.Y., \& Xu, F.S. (1963) Preliminary studies on the benthic fauna of the Yellow Sea and the East China Sea. Oceanologia et Limnologia Sinica 5, 306-321.
Liu, W.S., Ma, Y.H., Hu, S.Y. Miao, G.H. \& Li, J.H. (2002) Rearing venus clam seeds, Cyclina sinensis (Gmelin), on a commercial scale. Aquaculture 21, 109-114.
Liu, X.Q., Fang, J.G., Bao, Z.M. \& Wang, R.C. (2003) Progress in seed production and mariculture technology in economically significant species of clams in China. Chinese Journal of Zoology 38, 114-119.
Liu, J.X., Gao, T.X., Yokogawa, K. \& Zhang, Y.P. (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics and Evolution 39, 799-811.
Liu, J.X., Gao, T.X., Wu, S.F. \& Zhang, Y.P. (2007) Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus. Molecular Ecology 16, 275-288.
Mathews, L.M (2006) Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Molecular Ecology 15, 4049-4063.
Mizukami, Y. \& Kito, H. (1999) Nucleotide sequence variation in the ribosomal internal transcribed spacer regions of cultivated (cultivars) and field-collected thalli of Porphyra yezoensis. Fisheries Science 65, 787-789.
Nelson, T.S., Hoddell, R.J., Chou, L.M. Chan, W.K. \& Phang,
V.P.E. (2000) Phylogeographic structure of false clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf. Marine Biology 137, 727-736.
Page, T.J., \& Linse, K. (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biology. 25, 818-826.
Palumbi, S.R. \& Baker, C.S. (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology Evolution 11, 426-435.
Palumbi, S.R., Grabowsky, G. \& Duda, T. (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51, 1506-1517.
Pan, B.P., Song, L.S., Bu, W.J. \& Sun, J.S. (2005) Studies on Genetic Diversity and Differentiation between two Allopatric Populations of Cyclina sinensis. ACTA Hydrobiologica Sinica 29, 372-378.
Posada, D. \& Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818.
Reece, K.S., Cordes, J.F., Stubbs, J.B., Hudson, K.L. \& Francis, E.A. (2008) Molecular phylogenies help resolve taxonomic confusion with Asian Crassostrea oyster species. Marine Biology 153, 709-721.
Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. \& Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.
Shilts, H.M., Pascual, M.S., \& Ó Foighil, D. (2007) Systematic, taxonomic and biogeographic relationship of Argentine flat oysters. Molecular Phylogenetics and Evolution 44, 467-473.
Shulman, M.J. (1998) What can population genetics tell us about dispersal and biogeographic history of coral-reef fishes? Australian Journal of Ecology 23, 216-225.Shulman M.J. \& Bermingham, E. (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49, 897-910.
Stothard, J.R., Hughes, S. \& Rollinson, D. (1996) Variation within the internal transcribed spacer (ITS) of Ribosomal DNA genes of intermediate snail hosts within the genus Bulinus (Gastropoda: Planorbidae). Acta Tropica 61, 19-29.
Swofford, D.L. (1998) Phylogenetic analysis using Parsimony (PAUP), version 4.0. Sinauer Associates, Sunderland, Massachusetts.
Thompson, J.D., Gibson, T.J., \& Plewniak, F. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876-4882.
Tzong, D.T. (2007) Population structure and historical demography of the spotted mackerel (Scomber australasicus) off Taiwan inferred from mitochondrial control region sequencing. Zoological Studies. 46, 656-663
Vane, W.R.I., Raheem, D.C. \& Vogler, A.P. (1999) Evolution of the mimetic swallowtail butterfly Papillo dardanus: molecular data confirm relationship with P. phorcas and P. constantinus. Biological Journal of the Linnean Society 66, 215-229.

Vidigal, T. H.D.A, Spatz, L., Kissinger, J.C., Redondo, R.A.F, Pires, E.C.R, Simpson, A.J.G. \& Cavvalho, O.S. (2004) Analysis of the first and second internal transcribed spacer sequences of the ribosomal DNA in Biomphalaria tenagophila complex (Mollusca: Planorbidae). Memórias do Instituto Oswaldo Cruz 99, 2153-2158.
Vierna, J., Martines-Lage, A. \& Gonzalez-Tizon, A.M. (2010) Analysis of ITS_{1} and ITS_{2} Sequence in Ensis Razor Shells: suitability as molecular markers at the population and species level, and evolution of these ribosomal DNA spacers. Genome 53, 23-34
Vogler, A.P., \& Salle, D.R. (1994) Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Molecular Biology and Evolution 11, 393405.

Wang, L.X., Xiang, J.H. \& Zhou, L.H. (2001) Chromosome study of Cyclina sinensis Gmelin. Journal of Northwest Science Technology University 29, 94-96.
Wang, P. \& Sun, X. (1994) Last glacial maximum in China: comparison between land and sea. Catena 23, 341-353.
Wilber, A.E., Arnold, W.S. \& Bert, T.M. (2000) The genetic assessment of an "enhanced" bay scallop population: Do hatchery scallop, (Patinopecten yessoensis). Journal of Shellfish Research 19, 667-668.
Xu, F.S. (1997) Bivalve Mollusca of China Seas, Science Press, Beijing.
Xu, J.W., Chan, T.Y., Tsang. L.M. \& Chu, K.H. (2009) Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact. Molecular Phylogenetics and Evolution 52, 45-56.
Xu J Z. (2000) The living habits of Cyclina sinensis. Aquiculture (in Chinese)1, 27-28
Yu, Y.S., Wang, H., Lu, P. \& Wu, J.X. (1995) Habitat and growth of clam (Cyclina sinensis Gmelin). Journal of Fisheries of China 19, 276-279.
Yu, Y.S. \& Zheng, X.D. (2001) A preliminary observation on the morphology of Cyclina sinensis. Chinese Journal of Zoology 36, 2-6.
Zhang, X., Qi, Z.Y. Zhang, F.S. \& Ma, S.T. (1963) A preliminary study of the demarcation of marine molluscan faunal regions of China and its adjacent waters. Oceanologia et Limnologia Sinica China 5, 124-138.
Zhao, Y.M., Li, Q., Kong, L.F., Bao, Z.M. \& Wang, R.C. (2007) Genetic diversity and divergence among clam Cyclina sinensis populations assessed using amplified fragment length polymorphism. Fisheries Science 73, 1338-1343.
Zhao, Y.M., Li, Q., Kong, L.F. \& Mao, Y.Z. (2009) Genetic and morphological variation in the venus clam Cyclina sinensis along the coast of China. Hydrobiologia 635, 227-235.
Zhuang, Q.Q. (2001) Fauna Sinica (Phylum Mollusca Class Bivalvia Family Veneridae). Science Press China. Beijing.

